Suppr超能文献

一种结合临床前荟萃分析和随机验证性试验的方法,以提高治疗靶点验证的数据有效性。

A combined pre-clinical meta-analysis and randomized confirmatory trial approach to improve data validity for therapeutic target validation.

作者信息

Kleikers Pamela W M, Hooijmans Carlijn, Göb Eva, Langhauser Friederike, Rewell Sarah S J, Radermacher Kim, Ritskes-Hoitinga Merel, Howells David W, Kleinschnitz Christoph, Schmidt Harald H H W

机构信息

Department of Pharmacology, CARIM, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands.

SYRCLE at Central Animal Laboratory, Radboud University Medical Centre, Nijmegen, The Netherlands.

出版信息

Sci Rep. 2015 Aug 27;5:13428. doi: 10.1038/srep13428.

Abstract

Biomedical research suffers from a dramatically poor translational success. For example, in ischemic stroke, a condition with a high medical need, over a thousand experimental drug targets were unsuccessful. Here, we adopt methods from clinical research for a late-stage pre-clinical meta-analysis (MA) and randomized confirmatory trial (pRCT) approach. A profound body of literature suggests NOX2 to be a major therapeutic target in stroke. Systematic review and MA of all available NOX2(-/y) studies revealed a positive publication bias and lack of statistical power to detect a relevant reduction in infarct size. A fully powered multi-center pRCT rejects NOX2 as a target to improve neurofunctional outcomes or achieve a translationally relevant infarct size reduction. Thus stringent statistical thresholds, reporting negative data and a MA-pRCT approach can ensure biomedical data validity and overcome risks of bias.

摘要

生物医学研究的转化成功率极低。例如,在缺血性中风这种医疗需求很高的疾病中,一千多个实验性药物靶点都未成功。在此,我们采用临床研究方法进行晚期临床前荟萃分析(MA)和随机验证性试验(pRCT)。大量文献表明,NOX2是中风的主要治疗靶点。对所有可用的NOX2(-/y)研究进行系统综述和荟萃分析发现,存在正向发表偏倚,且缺乏检测梗死面积相关减小的统计效力。一项样本量充足的多中心pRCT否定了将NOX2作为改善神经功能结局或实现与转化相关的梗死面积减小的靶点。因此,严格的统计阈值、报告阴性数据以及MA-pRCT方法可以确保生物医学数据的有效性并克服偏倚风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee79/4550831/1cf121a81757/srep13428-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验