Suppr超能文献

果蝇视觉系统中特定导航的神经编码

Navigation-specific neural coding in the visual system of Drosophila.

作者信息

Dewar Alex D M, Wystrach Antoine, Graham Paul, Philippides Andrew

机构信息

School of Life Sciences, John Maynard Smith Building, University of Sussex, Falmer BN1 9QJ, UK.

School of Informatics, University of Edinburgh, Appleton Tower, 11 Crichton Street, Edinburgh EH8 9LE, UK.

出版信息

Biosystems. 2015 Oct;136:120-7. doi: 10.1016/j.biosystems.2015.07.008. Epub 2015 Aug 24.

Abstract

Drosophila melanogaster are a good system in which to understand the minimal requirements for widespread visually guided behaviours such as navigation, due to their small brains (adults possess only 100,000 neurons) and the availability of neurogenetic techniques which allow the identification of task-specific cell types. Recently published data describe the receptive fields for two classes of visually responsive neurons (R2 and R3/R4d ring neurons in the central complex) that are essential for visual tasks such as orientation memory for salient objects and simple pattern discriminations. What is interesting is that these cells have very large receptive fields and are very small in number, suggesting that each sub-population of cells might be a bottleneck in the processing of visual information for a specific behaviour, as each subset of cells effectively condenses information from approximately 3000 visual receptors in the eye, to fewer than 50 neurons in total. It has recently been shown how R1 ring neurons, which receive input from the same areas as the R2 and R3/R4d cells, are necessary for place learning in Drosophila. However, how R1 neurons enable place learning is unknown. By examining the information provided by different populations of hypothetical visual neurons in simulations of experimental arenas, we show that neurons with ring neuron-like receptive fields are sufficient for defining a location visually. In this way we provide a link between the type of information conveyed by ring neurons and the behaviour they support.

摘要

黑腹果蝇是一个很好的系统,可用于理解广泛的视觉引导行为(如导航)的最低要求,这是因为它们的大脑较小(成虫仅拥有100,000个神经元),并且有神经遗传学技术可用于识别特定任务的细胞类型。最近发表的数据描述了两类视觉反应神经元(中央复合体中的R2和R3/R4d环神经元)的感受野,这些神经元对于诸如显著物体的方向记忆和简单模式辨别等视觉任务至关重要。有趣的是,这些细胞具有非常大的感受野且数量非常少,这表明每个细胞亚群可能是特定行为视觉信息处理的瓶颈,因为每个细胞子集有效地将来自眼睛中约3000个视觉感受器的信息浓缩为总共不到50个神经元。最近的研究表明,与R2和R3/R4d细胞从相同区域接收输入的R1环神经元对于果蝇的位置学习是必需的。然而,R1神经元如何实现位置学习尚不清楚。通过在实验场地模拟中检查不同假设视觉神经元群体提供的信息,我们表明具有环神经元样感受野的神经元足以在视觉上定义一个位置。通过这种方式,我们在环神经元传达的信息类型与其所支持的行为之间建立了联系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验