Suppr超能文献

估计自然场景中的方向:昆虫中枢复合体内的尖峰神经网络模型。

Estimating orientation in natural scenes: A spiking neural network model of the insect central complex.

机构信息

Department of Informatics, University of Sussex, Brighton, United Kingdom.

School of Life Sciences, University of Sussex, Brighton, United Kingdom.

出版信息

PLoS Comput Biol. 2024 Aug 15;20(8):e1011913. doi: 10.1371/journal.pcbi.1011913. eCollection 2024 Aug.

Abstract

The central complex of insects contains cells, organised as a ring attractor, that encode head direction. The 'bump' of activity in the ring can be updated by idiothetic cues and external sensory information. Plasticity at the synapses between these cells and the ring neurons, that are responsible for bringing sensory information into the central complex, has been proposed to form a mapping between visual cues and the heading estimate which allows for more accurate tracking of the current heading, than if only idiothetic information were used. In Drosophila, ring neurons have well characterised non-linear receptive fields. In this work we produce synthetic versions of these visual receptive fields using a combination of excitatory inputs and mutual inhibition between ring neurons. We use these receptive fields to bring visual information into a spiking neural network model of the insect central complex based on the recently published Drosophila connectome. Previous modelling work has focused on how this circuit functions as a ring attractor using the same type of simple visual cues commonly used experimentally. While we initially test the model on these simple stimuli, we then go on to apply the model to complex natural scenes containing multiple conflicting cues. We show that this simple visual filtering provided by the ring neurons is sufficient to form a mapping between heading and visual features and maintain the heading estimate in the absence of angular velocity input. The network is successful at tracking heading even when presented with videos of natural scenes containing conflicting information from environmental changes and translation of the camera.

摘要

昆虫的中央复合体包含细胞,这些细胞组织成一个环吸引子,用于编码头部方向。环中的“凸起”活动可以通过本体感觉线索和外部感觉信息进行更新。这些细胞与负责将感觉信息带入中央复合体的环神经元之间的突触的可塑性,已经被提出用于在视觉线索和航向估计之间形成映射,从而允许更准确地跟踪当前航向,如果仅使用本体感觉信息,则无法实现。在果蝇中,环神经元具有特征明确的非线性感受野。在这项工作中,我们使用环神经元之间的兴奋性输入和相互抑制的组合来产生这些视觉感受野的合成版本。我们使用这些感受野将视觉信息带入基于最近发表的果蝇连接组的昆虫中央复合体的尖峰神经网络模型中。以前的建模工作主要集中在该电路如何使用与实验中常用的相同类型的简单视觉线索作为环吸引子来发挥作用。虽然我们最初在这些简单的刺激上测试模型,但我们随后将模型应用于包含多个冲突线索的复杂自然场景。我们表明,环神经元提供的这种简单视觉滤波足以在没有角速度输入的情况下形成航向和视觉特征之间的映射并保持航向估计。即使在呈现包含环境变化和摄像机平移的冲突信息的自然场景视频时,该网络也能成功跟踪航向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/090b/11349202/107398a4d441/pcbi.1011913.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验