Evans Chantell S, Ruhl David A, Chapman Edwin R
Department of Neuroscience, Howard Hughes Medical Institute, Molecular and Cellular Pharmacology Program, and.
Department of Neuroscience, Howard Hughes Medical Institute, Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53705-2275.
J Neurosci. 2015 Aug 26;35(34):11769-79. doi: 10.1523/JNEUROSCI.1694-15.2015.
The Ca(2+) sensor synaptotagmin-1 (syt-1) regulates neurotransmitter release by interacting with anionic phospholipids. Here we test the idea that the intrinsic kinetics of syt-membrane interactions determine, in part, the time course of synaptic transmission. To tune the kinetics of this interaction, we grafted structural elements from the slowest isoform, syt-7, onto the fastest isoform, syt-1, resulting in a chimera with intermediate kinetic properties. Moreover, the chimera coupled a physiologically irrelevant metal, Sr(2+), to membrane fusion in vitro. When substituted for syt-1 in mouse hippocampal neurons, the chimera slowed the kinetics of synaptic transmission. Neurons expressing the chimera also evinced rapid and efficient Sr(2+) triggered release, in contrast to the weak response of neurons expressing syt-1. These findings reveal presynaptic sensor-membrane interactions as a major factor regulating the speed of the release machinery. Finally, the chimera failed to clamp the elevated spontaneous fusion rate exhibited by syt-1 KO neurons, indicating that the metal binding loops of syt-1 regulate the two modes of release by distinct mechanisms.
In calcium, synaptotagmin-1 triggers neurotransmitter release by interacting with membranes. Here, we demonstrate that intrinsic properties of this interaction control the time course of synaptic transmission. We engineered a "chimera" using synaptotagmin-1 and elements of a slower isoform, synaptotagmin-7. When expressed in neurons, the chimera slowed the rate of neurotransmitter release. Furthermore, unlike native synaptotagmin-1, the chimera was able to function robustly in the presence of strontium-a metal not present in cells. We exploited this ability to show that a key function of synaptotagmin-1 is to penetrate cell membranes. This work sheds light on fundamental mechanisms of neurotransmitter release.
钙离子传感器突触结合蛋白-1(syt-1)通过与阴离子磷脂相互作用来调节神经递质释放。在此,我们验证了这样一种观点,即syt与膜相互作用的内在动力学部分决定了突触传递的时间进程。为了调节这种相互作用的动力学,我们将最慢亚型syt-7的结构元件嫁接到最快亚型syt-1上,从而产生了具有中间动力学特性的嵌合体。此外,该嵌合体在体外将生理上不相关的金属锶(Sr2+)与膜融合偶联起来。当在小鼠海马神经元中替代syt-1时,该嵌合体减缓了突触传递的动力学。与表达syt-1的神经元的微弱反应相反,表达该嵌合体的神经元也表现出快速且高效的Sr2+触发释放。这些发现揭示了突触前传感器与膜的相互作用是调节释放机制速度的一个主要因素。最后,该嵌合体未能抑制syt-1基因敲除神经元所表现出的升高的自发融合率,这表明syt-1的金属结合环通过不同机制调节两种释放模式。
在钙离子存在的情况下,突触结合蛋白-1通过与膜相互作用触发神经递质释放。在此,我们证明了这种相互作用的内在特性控制着突触传递的时间进程。我们利用突触结合蛋白-1和较慢亚型突触结合蛋白-7的元件构建了一种“嵌合体”。当在神经元中表达时,该嵌合体减缓了神经递质释放的速率。此外,与天然的突触结合蛋白-1不同,该嵌合体在锶(一种细胞中不存在的金属)存在的情况下能够强劲发挥作用。我们利用这一能力表明突触结合蛋白-1的一个关键功能是穿透细胞膜。这项工作揭示了神经递质释放的基本机制。