Vanni Matthieu P, Thomas Sébastien, Petry Heywood M, Bickford Martha E, Casanova Christian
Laboratoire des Neurosciences de la Vision, École d'optométrie, Université de Montréal, Montreal, Quebec H3C 3JC, Canada, and
Laboratoire des Neurosciences de la Vision, École d'optométrie, Université de Montréal, Montreal, Quebec H3C 3JC, Canada, and.
J Neurosci. 2015 Aug 26;35(34):11891-6. doi: 10.1523/JNEUROSCI.0717-15.2015.
The primary visual cortex (V1) receives its main thalamic drive from the dorsal lateral geniculate nucleus (dLGN) through synaptic contacts terminating primarily in cortical layer IV. In contrast, the projections from the pulvinar nucleus to the cortex are less clearly defined. The pulvinar projects predominantly to layer I in V1, and layer IV in extrastriate areas. These projection patterns suggest that the pulvinar nucleus most strongly influences (drives) activity in cortical areas beyond V1. Should this hypothesis be true, one would expect the spatiotemporal responses evoked by pulvinar activation to be different in V1 and extrastriate areas, reflecting the different connectivity patterns. We investigated this issue by analyzing the spatiotemporal dynamics of cortical visual areas' activity following thalamic electrical microstimulation in tree shrews, using optical imaging and voltage-sensitive dyes. As expected, electrical stimulation of the dLGN induced fast and local responses in V1, as well as in extrastriate and contralateral cortical areas. In contrast, electrical stimulation of the pulvinar induced fast and local responses in extrastriate areas, followed by weak and diffuse activation in V1 and contralateral cortical areas. This study highlights spatiotemporal cortical activation characteristics induced by stimulation of first (dLGN) and high-order (pulvinar) thalamic nuclei.
The pulvinar nucleus represents the main extrageniculate thalamic visual structure in higher-order mammals, but its exact role remains enigmatic. The pulvinar receive prominent inputs from virtually all visual cortical areas. Cortico-thalamo-cortical pathways through the pulvinar nuclei may then provide a complementary route for corticocortical information flow. One step toward the understanding of the role of transthalamic corticocortical pathways is to determine the nature of the signals transmitted between the cortex and the thalamus. By performing, for the first time, high spatiotemporal mesoscopic imaging on tree shrews (the primate's closest relative) through the combination of voltage-sensitive dye recordings and brain stimulation, we revealed clear evidence of distinct thalamocortical functional connectivity pattern originating from the geniculate nucleus and the pulvinar nuclei.
初级视觉皮层(V1)主要通过主要终止于皮层IV层的突触联系,从背侧外侧膝状体核(dLGN)接收丘脑驱动。相比之下,丘脑枕核向皮层的投射则不太明确。丘脑枕核主要投射到V1的I层以及纹外区域的IV层。这些投射模式表明,丘脑枕核对V1以外的皮层区域的活动影响(驱动)最为强烈。如果这一假设成立,那么人们会预期丘脑枕核激活所诱发的时空反应在V1和纹外区域会有所不同,这反映了不同的连接模式。我们通过分析树鼩丘脑电微刺激后皮层视觉区域活动的时空动态,利用光学成像和电压敏感染料来研究这个问题。正如预期的那样,对dLGN的电刺激在V1以及纹外和对侧皮层区域诱发了快速的局部反应。相比之下,对丘脑枕核的电刺激在纹外区域诱发了快速的局部反应,随后在V1和对侧皮层区域出现微弱且弥散的激活。这项研究突出了刺激第一级(dLGN)和高级(丘脑枕核)丘脑核所诱发的皮层时空激活特征。
丘脑枕核是高等哺乳动物中主要的膝状体外丘脑视觉结构,但其确切作用仍不明确。丘脑枕核从几乎所有视觉皮层区域接收显著的输入。通过丘脑枕核的皮质 - 丘脑 - 皮质通路可能为皮质间信息流提供一条互补途径。理解丘脑跨皮质皮质通路作用的一个步骤是确定皮层和丘脑之间传递的信号性质。通过首次结合电压敏感染料记录和脑刺激,对树鼩(与灵长类动物亲缘关系最近的物种)进行高时空分辨率的介观成像,我们揭示了源自膝状体核和丘脑枕核的明显丘脑皮质功能连接模式的明确证据。