Suppr超能文献

Bayexer:一种用于Illumina序列的准确且快速的贝叶斯解复用器。

Bayexer: an accurate and fast Bayesian demultiplexer for Illumina sequences.

作者信息

Yi Haisi, Li Zhe, Li Tao, Zhao Jindong

机构信息

Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China.

State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China and.

出版信息

Bioinformatics. 2015 Dec 15;31(24):4000-2. doi: 10.1093/bioinformatics/btv501. Epub 2015 Aug 26.

Abstract

UNLABELLED

Demultiplexing is used after high-throughput sequencing to in silico assign reads to the samples of origin based on the sequenced reads of the indices. Existing demultiplexing tools based on the similarity between the read index and the reference index sequences may fail to provide satisfactory results on low-quality datasets. We developed Bayexer, a Bayesian demultiplexing algorithm for Illumina sequencers. Bayexer uses the information extracted directly from the contaminant sequences of the targeting reads as the training dataset for a naïve Bayes classifier to assign reads. According to our evaluation, Bayexer provides higher capability, accuracy and speed on various real datasets than other tools.

AVAILABILITY AND IMPLEMENTATION

Bayexer is implemented in Perl and freely available at https://github.com/HaisiYi/Bayexer.

摘要

未标记

高通量测序后使用解复用技术,以便根据索引的测序读数在计算机上把读数分配到原始样本。现有的基于读数索引与参考索引序列之间相似性的解复用工具,在低质量数据集上可能无法提供令人满意的结果。我们开发了Bayexer,这是一种用于Illumina测序仪的贝叶斯解复用算法。Bayexer将直接从靶向读数的污染序列中提取的信息用作朴素贝叶斯分类器的训练数据集来分配读数。根据我们的评估,与其他工具相比,Bayexer在各种真实数据集上具有更高的能力、准确性和速度。

可用性与实现方式

Bayexer用Perl语言实现,可在https://github.com/HaisiYi/Bayexer上免费获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验