IEEE Trans Neural Netw Learn Syst. 2016 Jun;27(6):1177-89. doi: 10.1109/TNNLS.2015.2464316. Epub 2015 Aug 25.
Visual saliency is one of the most noteworthy perceptual abilities of human vision. Recent progress in cognitive psychology suggests that: 1) visual saliency analysis is mainly completed by the bottom-up mechanism consisting of feedforward low-level processing in primary visual cortex (area V1) and 2) color interacts with spatial cues and is influenced by the neighborhood context, and thus it plays an important role in a visual saliency analysis. From a computational perspective, the most existing saliency modeling approaches exploit multiple independent visual cues, irrespective of their interactions (or are not computed explicitly), and ignore contextual influences induced by neighboring colors. In addition, the use of color is often underestimated in the visual saliency analysis. In this paper, we propose a simple yet effective color saliency model that considers color as the only visual cue and mimics the color processing in V1. Our approach uses region-/boundary-defined color features with spatiochromatic filtering by considering local color-orientation interactions, therefore captures homogeneous color elements, subtle textures within the object and the overall salient object from the color image. To account for color contextual influences, we present a divisive normalization method for chromatic stimuli through the pooling of contrary/complementary color units. We further define a color perceptual metric over the entire scene to produce saliency maps for color regions and color boundaries individually. These maps are finally globally integrated into a one single saliency map. The final saliency map is produced by Gaussian blurring for robustness. We evaluate the proposed method on both synthetic stimuli and several benchmark saliency data sets from the visual saliency analysis to salient object detection. The experimental results demonstrate that the use of color as a unique visual cue achieves competitive results on par with or better than 12 state-of-the-art approaches.
视觉显著性是人类视觉最显著的感知能力之一。认知心理学的最新进展表明:1)视觉显著性分析主要是通过由初级视觉皮层(V1 区)前馈低级处理组成的自下而上的机制来完成的,2)颜色与空间线索相互作用,并受到邻域上下文的影响,因此在视觉显著性分析中起着重要作用。从计算的角度来看,大多数现有的显著建模方法利用多个独立的视觉线索,而不考虑它们的相互作用(或不明确计算),并忽略了相邻颜色引起的上下文影响。此外,在视觉显著性分析中,颜色的使用往往被低估。在本文中,我们提出了一种简单而有效的颜色显著性模型,该模型仅考虑颜色作为唯一的视觉线索,并模仿 V1 中的颜色处理。我们的方法使用区域/边界定义的颜色特征,并通过考虑局部颜色-方向相互作用进行色空间滤波,从而捕获同质的颜色元素、对象内的细微纹理和整体显著对象。为了考虑颜色上下文的影响,我们通过对相反/互补颜色单元的池化,提出了一种用于色觉刺激的可分性归一化方法。我们进一步定义了整个场景的颜色感知度量,以分别为颜色区域和颜色边界生成显著图。最后,这些图被全局集成到一个单一的显著图中。最终的显著图通过高斯模糊产生,以提高鲁棒性。我们在视觉显著性分析到显著目标检测的合成刺激和几个基准显著性数据集上评估了所提出的方法。实验结果表明,使用颜色作为唯一的视觉线索可以达到与 12 种最先进方法相当或更好的竞争结果。