Suppr超能文献

基于马尔可夫吸收概率的显著区域检测。

Saliency region detection based on Markov absorption probabilities.

出版信息

IEEE Trans Image Process. 2015 May;24(5):1639-49. doi: 10.1109/TIP.2015.2403241.

Abstract

In this paper, we present a novel bottom-up salient object detection approach by exploiting the relationship between the saliency detection and the Markov absorption probability. First, we calculate a preliminary saliency map by the Markov absorption probability on a weighted graph via partial image borders as background prior. Unlike most of the existing background prior-based methods which treated all image boundaries as background, we only use the left and top sides as background for simplicity. The saliency of each element is defined as the sum of the corresponding absorption probability by several left and top virtual boundary nodes, which are most similar to it. Second, a better result is obtained by ranking the relevance of the image elements with foreground cues extracted from the preliminary saliency map, which can effectively emphasize the objects against the background, whose computation is processed similarly as that in the first stage and yet substantially different from the former one. At last, three optimization techniques--content-based diffusion mechanism, superpixelwise depression function, and guided filter--are utilized to further modify the saliency map generalized at the second stage, which is proved to be effective and complementary to each other. Both qualitative and quantitative evaluations on four publicly available benchmark data sets demonstrate the robustness and efficiency of the proposed method against 17 state-of-the-art methods.

摘要

在本文中,我们提出了一种新颖的自下而上的显著目标检测方法,利用了显著性检测和马尔可夫吸收概率之间的关系。首先,我们通过加权图上的马尔可夫吸收概率,利用部分图像边界作为背景先验来计算初步的显著图。与大多数基于背景先验的方法不同,我们仅使用左边界和上边界作为背景,以简化处理。每个元素的显著性定义为与其最相似的几个左边界和上边界虚拟节点对应的吸收概率之和。其次,通过提取初步显著图中的前景线索对图像元素的相关性进行排序,从而获得更好的结果,这可以有效地突出背景中的对象,其计算过程与第一阶段类似,但与前一阶段有很大的不同。最后,利用基于内容的扩散机制、超像素抑郁函数和导向滤波器三种优化技术,进一步修正第二阶段广义的显著图,证明了其有效性和互补性。在四个公开的基准数据集上进行的定性和定量评估表明,该方法对 17 种最先进的方法具有鲁棒性和高效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验