El Mekki-Azouzi Mouna, Tripathi Chandra Shekhar Pati, Pallares Gaël, Gardien Véronique, Caupin Frédéric
Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon and Institut Universitaire de France, 69622 Villeurbanne Cedex, France.
UMR CNRS 5276 Laboratoire de Géologie de Lyon, Université Lyon1/ENS Lyon, Campus de la Doua, 2 rue Raphaël Dubois, 69622 Villeurbanne Cedex, France.
Sci Rep. 2015 Aug 28;5:13168. doi: 10.1038/srep13168.
As widespread, continuous instrumental Earth surface air temperature records are available only for the last hundred fifty years, indirect reconstructions of past temperatures are obtained by analyzing "proxies". Fluid inclusions (FIs) present in virtually all rock minerals including exogenous rocks are routinely used to constrain formation temperature of crystals. The method relies on the presence of a vapour bubble in the FI. However, measurements are sometimes biased by surface tension effects. They are even impossible when the bubble is absent (monophasic FI) for kinetic or thermodynamic reasons. These limitations are common for surface or subsurface rocks. Here we use FIs in hydrothermal or geodic quartz crystals to demonstrate the potential of Brillouin spectroscopy in determining the formation temperature of monophasic FIs without the need for a bubble. Hence, this novel method offers a promising way to overcome the above limitations.
由于广泛、连续的仪器记录的地表气温数据仅在过去150年才有,因此通过分析“代用指标”来间接重建过去的温度。几乎所有岩石矿物(包括外源岩)中存在的流体包裹体(FI)通常用于确定晶体的形成温度。该方法依赖于流体包裹体中存在蒸汽泡。然而,测量有时会受到表面张力效应的影响。当由于动力学或热力学原因不存在气泡(单相流体包裹体)时,测量甚至是不可能的。这些限制在地表或地下岩石中很常见。在这里,我们使用热液或地脉石英晶体中的流体包裹体来证明布里渊光谱在确定单相流体包裹体形成温度方面的潜力,而无需气泡。因此,这种新方法为克服上述限制提供了一种很有前景的途径。