Jiang Xiaojun, Pissaloux Daniel, De La Fouchardiere Christelle, Desseigne Françoise, Wang Qing, Attignon Valery, Fondrevelle Marie-Eve, De La Fouchardiere Arnaud, Perol Maurice, Cassier Philippe, Seigne Christelle, Perol David, Ray-Coquard Isabelle, Meeus Pierre, Fayette Jerome, Flechon Aude, Le Cesne Axel, Penel Nicolas, Tredan Olivier, Blay Jean-Yves
Department of Translational Research, Centre Leon Berard, 69008 Lyon France.
Department of Medical Oncology, Centre Leon Berard, 69008 Lyon France.
Oncotarget. 2015 Sep 22;6(28):26388-99. doi: 10.18632/oncotarget.4557.
Validated predictive biomarkers for multi-tyrosine kinase inhibitors (MTKI) efficacy are lacking. We hypothesized that interindividual response variability is partially dependent on somatic DNA copy number alterations (SCNAs), particularly those of genes encoding the protein tyrosines targeted by MTKI (called target genes). Genomic alterations were investigated in MTKI responsive and non responsive patients with different histological subtypes included in the ProfiLER protocol (NCT 01774409). From March 2013 to August 2014, 58 patients with advanced cancer treated with one of 7 MTKIs were included in the ProfiLER trial and split into one discovery cohort (n = 13), and 2 validation cohorts (n = 12 and 33). An analysis of the copy number alterations of kinase-coding genes for each of 7 MTKIs was conducted. A prediction algorithm (SUMSCAN) based on the presence of specific gene gains (Tumor Target Charge, TTC) and losses (Tumor Target Losses, TTL) was conceived and validated in 2 independent validation cohorts. MTKI sensitive tumors present a characteristic SCNA profile including a global gain profile, and specific gains for target genes while MTKI resistant tumors present the opposite. SUMSCAN favorable patients achieved longer progression-free and overall survival. This work shows that the copy number sum of kinase-coding genes enables the prediction of response of cancer patients to MTKI, opening a novel paradigm for the treatment selection of these patients.
目前缺乏针对多酪氨酸激酶抑制剂(MTKI)疗效的经过验证的预测生物标志物。我们假设个体间的反应变异性部分取决于体细胞DNA拷贝数改变(SCNA),特别是那些编码MTKI靶向的蛋白质酪氨酸的基因(称为靶基因)的改变。在ProfiLER方案(NCT 01774409)纳入的不同组织学亚型的MTKI反应性和无反应性患者中研究了基因组改变。从2013年3月到2014年8月,ProfiLER试验纳入了58例接受7种MTKI之一治疗的晚期癌症患者,并分为一个发现队列(n = 13)和2个验证队列(n = 12和33)。对7种MTKI中每种激酶编码基因的拷贝数改变进行了分析。基于特定基因增益(肿瘤靶标电荷,TTC)和缺失(肿瘤靶标缺失,TTL)的存在构建了一种预测算法(SUMSCAN),并在2个独立的验证队列中进行了验证。MTKI敏感肿瘤呈现出特征性的SCNA图谱,包括整体增益图谱和靶基因的特定增益,而MTKI耐药肿瘤则呈现相反情况。SUMSCAN评估为有利的患者实现了更长的无进展生存期和总生存期。这项工作表明,激酶编码基因的拷贝数总和能够预测癌症患者对MTKI的反应,为这些患者的治疗选择开辟了一种新的模式。