School of Science, Shandong Jiaotong University , Jinan 250357 China.
NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China.
J Chem Inf Model. 2015 Sep 28;55(9):1903-13. doi: 10.1021/acs.jcim.5b00173. Epub 2015 Sep 4.
Drug resistance of mutations V32I, G48V, I50V, I54V, and I84V in HIV-1 protease (PR) was found in clinical treatment of HIV patients with the drug amprenavir (APV). In order to elucidate the molecular mechanism of drug resistance associated with these mutations, the thermodynamic integration (TI) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods were applied to calculate binding free energies of APV to wild-type PR and these mutated PRs. The relative binding free energy differences from the TI calculations reveal that the decrease in van der Waals interactions of APV with mutated PRs relative to the wild-type PR mainly drives the drug resistance. This result is in good agreement with the previous experimental results and is also consistent with the results from MM-PBSA calculations. Analyses based on molecular dynamics trajectories show that these mutations can adjust the shape and conformation of the binding pocket, which provides main contributions to the decrease in the van der Waals interactions of APV with mutated PRs. The present study could provide important guidance for the design of new potent inhibitors that could alleviate drug resistance of PR due to mutations.
在对感染 HIV 的患者进行安普那韦(APV)药物治疗时,发现 HIV-1 蛋白酶(PR)中的突变 V32I、G48V、I50V、I54V 和 I84V 会产生耐药性。为了阐明与这些突变相关的耐药性的分子机制,应用热力学积分(TI)和分子力学泊松-玻尔兹曼表面积(MM-PBSA)方法计算了 APV 与野生型 PR 和这些突变 PR 的结合自由能。从 TI 计算得出的相对结合自由能差异表明,APV 与突变 PR 之间的范德华相互作用的减少相对于野生型 PR 主要导致耐药性。这一结果与之前的实验结果一致,也与 MM-PBSA 计算结果一致。基于分子动力学轨迹的分析表明,这些突变可以调整结合口袋的形状和构象,这为 APV 与突变 PR 之间的范德华相互作用的减少提供了主要贡献。本研究可为设计新的有效抑制剂提供重要指导,这些抑制剂可以缓解由于突变导致的 PR 耐药性。