Suppr超能文献

调整现有自然语言处理资源以识别临床记录中的心血管危险因素。

Adapting existing natural language processing resources for cardiovascular risk factors identification in clinical notes.

作者信息

Khalifa Abdulrahman, Meystre Stéphane

机构信息

Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, United States.

出版信息

J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S128-S132. doi: 10.1016/j.jbi.2015.08.002. Epub 2015 Aug 28.

Abstract

The 2014 i2b2 natural language processing shared task focused on identifying cardiovascular risk factors such as high blood pressure, high cholesterol levels, obesity and smoking status among other factors found in health records of diabetic patients. In addition, the task involved detecting medications, and time information associated with the extracted data. This paper presents the development and evaluation of a natural language processing (NLP) application conceived for this i2b2 shared task. For increased efficiency, the application main components were adapted from two existing NLP tools implemented in the Apache UIMA framework: Textractor (for dictionary-based lookup) and cTAKES (for preprocessing and smoking status detection). The application achieved a final (micro-averaged) F1-measure of 87.5% on the final evaluation test set. Our attempt was mostly based on existing tools adapted with minimal changes and allowed for satisfying performance with limited development efforts.

摘要

2014年i2b2自然语言处理共享任务聚焦于识别心血管危险因素,如糖尿病患者健康记录中发现的高血压、高胆固醇水平、肥胖及吸烟状况等其他因素。此外,该任务还涉及检测药物以及与提取数据相关的时间信息。本文介绍了为该i2b2共享任务构思的自然语言处理(NLP)应用程序的开发与评估。为提高效率,应用程序的主要组件改编自Apache UIMA框架中实现的两个现有NLP工具:Textractor(用于基于字典的查找)和cTAKES(用于预处理和吸烟状况检测)。该应用程序在最终评估测试集上的最终(微平均)F1值为87.5%。我们的尝试主要基于对现有工具进行最少更改的改编,并通过有限的开发工作实现了令人满意的性能。

相似文献

引用本文的文献

本文引用的文献

3
Evaluating temporal relations in clinical text: 2012 i2b2 Challenge.评估临床文本中的时间关系:2012 i2b2 挑战赛。
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):806-13. doi: 10.1136/amiajnl-2013-001628. Epub 2013 Apr 5.
4
5
Natural language processing: an introduction.自然语言处理:入门。
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):544-51. doi: 10.1136/amiajnl-2011-000464.
7
2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text.2010 i2b2/VA 挑战赛:临床文本中的概念、断言和关系
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6. doi: 10.1136/amiajnl-2011-000203. Epub 2011 Jun 16.
9
Extracting medication information from clinical text.从临床文本中提取药物信息。
J Am Med Inform Assoc. 2010 Sep-Oct;17(5):514-8. doi: 10.1136/jamia.2010.003947.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验