Department of Information Studies, University at Albany, SUNY, Albany, New York 12222, USA.
J Am Med Inform Assoc. 2012 Sep-Oct;19(5):786-91. doi: 10.1136/amiajnl-2011-000784. Epub 2012 Feb 24.
The fifth i2b2/VA Workshop on Natural Language Processing Challenges for Clinical Records conducted a systematic review on resolution of noun phrase coreference in medical records. Informatics for Integrating Biology and the Bedside (i2b2) and the Veterans Affair (VA) Consortium for Healthcare Informatics Research (CHIR) partnered to organize the coreference challenge. They provided the research community with two corpora of medical records for the development and evaluation of the coreference resolution systems. These corpora contained various record types (ie, discharge summaries, pathology reports) from multiple institutions.
The coreference challenge provided the community with two annotated ground truth corpora and evaluated systems on coreference resolution in two ways: first, it evaluated systems for their ability to identify mentions of concepts and to link together those mentions. Second, it evaluated the ability of the systems to link together ground truth mentions that refer to the same entity. Twenty teams representing 29 organizations and nine countries participated in the coreference challenge.
The teams' system submissions showed that machine-learning and rule-based approaches worked best when augmented with external knowledge sources and coreference clues extracted from document structure. The systems performed better in coreference resolution when provided with ground truth mentions. Overall, the systems struggled in solving coreference resolution for cases that required domain knowledge.
第五届 i2b2/VA 自然语言处理挑战临床记录研讨会对医疗记录中的名词短语共指消解问题进行了系统综述。整合生物学和床边信息学(i2b2)和退伍军人事务部(VA)医疗保健信息学研究联盟(CHIR)合作组织了本次共指挑战。他们为研究社区提供了两份医疗记录语料库,用于开发和评估共指消解系统。这些语料库包含来自多个机构的各种记录类型(例如,出院小结、病理报告)。
本次共指挑战为社区提供了两个已注释的真实语料库,并通过两种方式评估系统的共指消解能力:首先,评估系统识别概念提及和将这些提及联系起来的能力。其次,评估系统将指称同一实体的真实提及联系起来的能力。二十支代表 29 个组织和九个国家的团队参加了共指挑战。
团队系统提交的结果表明,机器学习和基于规则的方法在结合外部知识源和从文档结构中提取的共指线索时效果最佳。当提供真实提及时,系统在共指消解方面的表现更好。总体而言,系统在解决需要领域知识的共指消解问题时遇到了困难。