Mehrkanoon Siamak, Agudelo Oscar Mauricio, Suykens Johan A K
KU Leuven, ESAT-STADIUS, Kasteelpark Arenberg 10, B-3001 Leuven (Heverlee), Belgium.
Neural Netw. 2015 Nov;71:88-104. doi: 10.1016/j.neunet.2015.08.001. Epub 2015 Aug 14.
This paper introduces an on-line semi-supervised learning algorithm formulated as a regularized kernel spectral clustering (KSC) approach. We consider the case where new data arrive sequentially but only a small fraction of it is labeled. The available labeled data act as prototypes and help to improve the performance of the algorithm to estimate the labels of the unlabeled data points. We adopt a recently proposed multi-class semi-supervised KSC based algorithm (MSS-KSC) and make it applicable for on-line data clustering. Given a few user-labeled data points the initial model is learned and then the class membership of the remaining data points in the current and subsequent time instants are estimated and propagated in an on-line fashion. The update of the memberships is carried out mainly using the out-of-sample extension property of the model. Initially the algorithm is tested on computer-generated data sets, then we show that video segmentation can be cast as a semi-supervised learning problem. Furthermore we show how the tracking capabilities of the Kalman filter can be used to provide the labels of objects in motion and thus regularizing the solution obtained by the MSS-KSC algorithm. In the experiments, we demonstrate the performance of the proposed method on synthetic data sets and real-life videos where the clusters evolve in a smooth fashion over time.
本文介绍了一种在线半监督学习算法,该算法被制定为一种正则化核谱聚类(KSC)方法。我们考虑新数据按顺序到达但只有一小部分被标记的情况。可用的标记数据充当原型,并有助于提高算法估计未标记数据点标签的性能。我们采用最近提出的基于多类半监督KSC的算法(MSS-KSC),并使其适用于在线数据聚类。给定一些用户标记的数据点,学习初始模型,然后以在线方式估计并传播当前和后续时刻剩余数据点的类别成员关系。成员关系的更新主要利用模型的样本外扩展属性来进行。最初,该算法在计算机生成的数据集上进行测试,然后我们表明视频分割可以被视为一个半监督学习问题。此外,我们展示了如何利用卡尔曼滤波器的跟踪能力来提供运动对象的标签,从而使通过MSS-KSC算法获得的解决方案正则化。在实验中,我们在合成数据集和真实视频上展示了所提出方法的性能,其中聚类随时间以平滑方式演变。