Suppr超能文献

CAMWI:利用加权聚类系数和加权密度检测蛋白质复合物

CAMWI: Detecting protein complexes using weighted clustering coefficient and weighted density.

作者信息

Lakizadeh Amir, Jalili Saeed, Marashi Sayed-Amir

机构信息

Computer Engineering Department , Tarbiat Modares University, Tehran, Iran.

Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.

出版信息

Comput Biol Chem. 2015 Oct;58:231-40. doi: 10.1016/j.compbiolchem.2015.07.012. Epub 2015 Jul 30.

Abstract

Detection of protein complexes is very important to understand the principles of cellular organization and function. Recently, large protein-protein interactions (PPIs) networks have become available using high-throughput experimental techniques. These networks make it possible to develop computational methods for protein complex detection. Most of the current methods rely on the assumption that protein complex as a module has dense structure. However complexes have core-attachment structure and proteins in a complex core share a high degree of functional similarity, so it expects that a core has high weighted density. In this paper we present a Core-Attachment based method for protein complex detection from Weighted PPI Interactions using clustering coefficient and weighted density. Experimental results show that the proposed method, CAMWI improves the accuracy of protein complex detection.

摘要

蛋白质复合物的检测对于理解细胞组织和功能原理非常重要。最近,利用高通量实验技术已经获得了大型蛋白质-蛋白质相互作用(PPI)网络。这些网络使得开发用于蛋白质复合物检测的计算方法成为可能。当前大多数方法都依赖于这样的假设,即作为一个模块的蛋白质复合物具有密集结构。然而,复合物具有核心-附着结构,并且复合物核心中的蛋白质具有高度的功能相似性,因此预计核心具有高加权密度。在本文中,我们提出了一种基于核心-附着的方法,用于从加权PPI相互作用中使用聚类系数和加权密度检测蛋白质复合物。实验结果表明,所提出的方法CAMWI提高了蛋白质复合物检测的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验