Müller Christine, Birmes Franziska S, Rückert Christian, Kalinowski Jörn, Fetzner Susanne
Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany.
Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
Appl Environ Microbiol. 2015 Nov;81(22):7720-9. doi: 10.1128/AEM.02145-15. Epub 2015 Aug 28.
Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s(-1), respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases.
红平红球菌BG43能够将铜绿假单胞菌群体感应信号分子PQS(假单胞菌喹诺酮信号)[2-庚基-3-羟基-4(1H)-喹诺酮]和HHQ[2-庚基-4(1H)-喹诺酮]降解为邻氨基苯甲酸。基于HHQ的降解可能涉及羟基化生成PQS,随后杂环进行双加氧裂解以及所得N-辛酰邻氨基苯甲酸水解的假设,对该基因组进行了搜索以寻找相应的候选基因。在菌株BG43的环状质粒pRLCBG43上鉴定出两个基因簇,aqdA1B1C1和aqdA2B2C2,每个基因簇预计编码一种水解酶、一种黄素单加氧酶和一种与1H-3-羟基-4-氧代喹哪啶2,4-双加氧酶相关的双加氧酶。所有基因的转录均被PQS上调,这表明两个基因簇都编码烷基喹诺酮特异性分解代谢酶。一个编码假定转录调节因子的aqdR基因也可被PQS诱导,它位于aqdA2B2C2簇附近。aqdA2B2C2在大肠杆菌中的表达赋予了其将HHQ和PQS降解为邻氨基苯甲酸的能力;然而,对于用aqdA1B1C1转化的大肠杆菌,仅观察到PQS的降解。重组AqdC1蛋白的纯化证实它催化PQS裂解形成N-辛酰邻氨基苯甲酸和一氧化碳,并分别显示出PQS的表观Km和kcat值约为27μM和21 s(-1)。PQS双加氧酶基因aqdC1或aqdC2在铜绿假单胞菌PAO1中的异源表达抑制了毒力因子绿脓菌素和鼠李糖脂的产生,并减少了铁载体绿脓菌素的合成。因此,新的PQS双加氧酶扩展了群体淬灭酶的工具库。