Suppr超能文献

通过重编程核苷酸代谢途径开发新型无质粒胸苷生产菌

Development of a Novel Plasmid-Free Thymidine Producer by Reprogramming Nucleotide Metabolic Pathways.

作者信息

Kim Jin-Sook, Jeong Min-Kyung, Koo Bong-Seong, Lee Hyeon-Cheol

机构信息

ForBioKorea Co., Ltd., Seoul, Republic of Korea.

BioNgene Co., Ltd., Seoul, Republic of Korea.

出版信息

Appl Environ Microbiol. 2015 Nov;81(22):7708-19. doi: 10.1128/AEM.02031-15. Epub 2015 Aug 28.

Abstract

A novel thymidine-producing strain of Escherichia coli was prepared by genome recombineering. Eleven genes were deleted by replacement with an expression cassette, and 7 genes were integrated into the genome. The resulting strain, E. coli HLT013, showed a high thymidine yield with a low deoxyuridine content. DNA microarrays were then used to compare the gene expression profiles of HLT013 and its isogenic parent strain. Based on microarray analysis, the pyr biosynthesis genes and 10 additional genes were selected and then expressed in HLT013 to find reasonable candidates for enhancing thymidine yield. Among these, phage shock protein A (PspA) showed positive effects on thymidine production by diminishing redox stress. Thus, we integrated pspA into the HLT013 genome, resulting in E. coli strain HLT026, which produced 13.2 g/liter thymidine for 120 h with fed-batch fermentation. Here, we also provide a basis for new testable hypotheses regarding the enhancement of thymidine productivity and the attainment of a more complete understanding of nucleotide metabolism in bacteria.

摘要

通过基因组重组工程制备了一种新型的产胸苷大肠杆菌菌株。用一个表达盒替换删除了11个基因,并将7个基因整合到基因组中。所得菌株大肠杆菌HLT013表现出高胸苷产量和低脱氧尿苷含量。然后使用DNA微阵列比较HLT013及其同基因亲本菌株的基因表达谱。基于微阵列分析,选择了嘧啶生物合成基因和另外10个基因,然后在HLT013中表达,以寻找提高胸苷产量的合理候选基因。其中,噬菌体休克蛋白A(PspA)通过减轻氧化还原应激对胸苷生产产生了积极影响。因此,我们将pspA整合到HLT013基因组中,得到大肠杆菌菌株HLT026,该菌株在分批补料发酵120小时后可产生13.2克/升胸苷。在此,我们还为关于提高胸苷生产力以及更全面了解细菌核苷酸代谢的新可测试假设提供了依据。

相似文献

1
Development of a Novel Plasmid-Free Thymidine Producer by Reprogramming Nucleotide Metabolic Pathways.
Appl Environ Microbiol. 2015 Nov;81(22):7708-19. doi: 10.1128/AEM.02031-15. Epub 2015 Aug 28.
2
Transcriptional profiling of thymidine-producing strain recombineered from Escherichia coli BL21.
Genom Data. 2015 Aug 14;6:63-4. doi: 10.1016/j.gdata.2015.08.012. eCollection 2015 Dec.
3
[Metabolic engineering of Escherichia coli for thymidine production].
Sheng Wu Gong Cheng Xue Bao. 2015 Jan;31(1):105-14.
4
High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain.
J Biotechnol. 2010 Aug 20;149(1-2):24-32. doi: 10.1016/j.jbiotec.2010.06.011. Epub 2010 Jun 22.
5
Fermentative production of thymidine by a metabolically engineered Escherichia coli strain.
Appl Environ Microbiol. 2009 Apr;75(8):2423-32. doi: 10.1128/AEM.02328-08. Epub 2009 Feb 27.
6
Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system.
Appl Microbiol Biotechnol. 2012 Jul;95(1):169-78. doi: 10.1007/s00253-012-3956-9. Epub 2012 Feb 28.
7
Metabolic engineering of Escherichia coli for the production of fumaric acid.
Biotechnol Bioeng. 2013 Jul;110(7):2025-34. doi: 10.1002/bit.24868. Epub 2013 Mar 1.
8
Replacement of Thymidine by a Modified Base in the Escherichia coli Genome.
J Am Chem Soc. 2016 Jun 15;138(23):7272-5. doi: 10.1021/jacs.6b03904. Epub 2016 Jun 3.
9
Escherichia coli W as a new platform strain for the enhanced production of L-valine by systems metabolic engineering.
Biotechnol Bioeng. 2011 May;108(5):1140-7. doi: 10.1002/bit.23044. Epub 2011 Jan 25.
10
Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation.
Proc Natl Acad Sci U S A. 2007 May 8;104(19):7797-802. doi: 10.1073/pnas.0702609104. Epub 2007 Apr 26.

本文引用的文献

1
Synthesis of the human milk oligosaccharide lacto-N-tetraose in metabolically engineered, plasmid-free E. coli.
Chembiochem. 2014 Sep 5;15(13):1896-900. doi: 10.1002/cbic.201402070. Epub 2014 Jul 17.
4
RpoS proteolysis is controlled directly by ATP levels in Escherichia coli.
Genes Dev. 2012 Mar 15;26(6):548-53. doi: 10.1101/gad.183517.111.
5
Expression of recombinant multi-coloured fluorescent antibodies in gor -/trxB- E. coli cytoplasm.
BMC Biotechnol. 2011 Nov 30;11:117. doi: 10.1186/1472-6750-11-117.
6
Dissipation of proton motive force is not sufficient to induce the phage shock protein response in Escherichia coli.
Curr Microbiol. 2011 May;62(5):1374-85. doi: 10.1007/s00284-011-9869-5. Epub 2011 Jan 23.
7
Enhancement of thymidine production in E. coli by eliminating repressors regulating the carbamoyl phosphate synthetase operon.
Biotechnol Lett. 2011 Jan;33(1):71-8. doi: 10.1007/s10529-010-0413-7. Epub 2010 Sep 25.
8
High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain.
J Biotechnol. 2010 Aug 20;149(1-2):24-32. doi: 10.1016/j.jbiotec.2010.06.011. Epub 2010 Jun 22.
9
Thymidine production by overexpressing NAD+ kinase in an Escherichia coli recombinant strain.
Biotechnol Lett. 2009 Dec;31(12):1929-36. doi: 10.1007/s10529-009-0097-z.
10
Fermentative production of thymidine by a metabolically engineered Escherichia coli strain.
Appl Environ Microbiol. 2009 Apr;75(8):2423-32. doi: 10.1128/AEM.02328-08. Epub 2009 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验