Galyean Anne A, Vreeland Wyatt N, Filliben James J, Holbrook R David, Ripple Dean C, Weinberg Howard S
Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA.
Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
Anal Chim Acta. 2015 Jul 30;886:207-13. doi: 10.1016/j.aca.2015.06.027. Epub 2015 Aug 7.
The analysis of natural and otherwise complex samples is challenging and yields uncertainty about the accuracy and precision of measurements. Here we present a practical tool to assess relative accuracy among separation protocols for techniques using light scattering detection. Due to the highly non-linear relationship between particle size and the intensity of scattered light, a few large particles may obfuscate greater numbers of small particles. Therefore, insufficiently separated mixtures may result in an overestimate of the average measured particle size. Complete separation of complex samples is needed to mitigate this challenge. A separation protocol can be considered improved if the average measured size is smaller than a previous separation protocol. Further, the protocol resulting in the smallest average measured particle size yields the best separation among those explored. If the differential in average measured size between protocols is less than the measurement uncertainty, then the selected protocols are of equivalent precision. As a demonstration, this assessment metric is applied to optimization of cross flow (V(x)) protocols in asymmetric flow field flow fractionation (AF(4)) separation interfaced with online quasi-elastic light scattering (QELS) detection using mixtures of polystyrene beads spanning a large size range. Using this assessment metric, the V(x) parameter was modulated to improve separation until the average measured size of the mixture was in statistical agreement with the calculated average size of particles in the mixture. While we demonstrate this metric by improving AF(4) V(x) protocols, it can be applied to any given separation parameters for separation techniques that employ dynamic light scattering detectors.
对天然及其他复杂样品进行分析具有挑战性,并且会在测量的准确性和精密度方面产生不确定性。在此,我们提出一种实用工具,用于评估使用光散射检测的技术在分离方案之间的相对准确性。由于粒径与散射光强度之间存在高度非线性关系,少数大颗粒可能会掩盖更多小颗粒。因此,分离不充分的混合物可能导致对平均测量粒径的高估。需要对复杂样品进行完全分离以应对这一挑战。如果平均测量尺寸小于先前的分离方案,则可认为分离方案得到了改进。此外,在所有探索的方案中,导致平均测量粒径最小的方案实现了最佳分离。如果方案之间平均测量尺寸的差异小于测量不确定度,则所选方案具有同等精度。作为示例,该评估指标应用于优化与在线准弹性光散射(QELS)检测联用的不对称流场流分馏(AF(4))分离中的错流(V(x))方案,使用跨越较大尺寸范围的聚苯乙烯珠混合物。使用该评估指标,对V(x)参数进行调节以改善分离效果,直至混合物的平均测量尺寸与混合物中颗粒的计算平均尺寸在统计上一致。虽然我们通过改进AF(4) V(x)方案来展示该指标,但它可应用于采用动态光散射检测器的分离技术的任何给定分离参数。
Anal Chim Acta. 2015-7-30
J Chromatogr A. 2012-11-26