在线检测器在纳米材料场流分离分析中的比较。

Comparison of on-line detectors for field flow fractionation analysis of nanomaterials.

机构信息

US Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Rd., Vicksburg, MS 39180, USA.

出版信息

Talanta. 2013 Jan 30;104:140-8. doi: 10.1016/j.talanta.2012.11.008. Epub 2012 Nov 19.

Abstract

Characterization of nanomaterials must include analysis of both size and chemical composition. Many analytical techniques, such as dynamic light scattering (DLS), are capable of measuring the size of suspended nanometer-sized particles, yet provide no information on the composition of the particle. While field flow fractionation (FFF) is a powerful nanoparticle sizing technique, common detectors used in conjunction with the size separation, including UV, light-scattering, and fluorescence spectroscopy, do not provide the needed particle compositional information. Further, these detectors do not respond directly to the mass concentration of nanoparticles. The present work describes the advantages achieved when interfacing sensitive and elemental specific detectors, such as inductively coupled plasma atomic emission spectroscopy and mass spectrometry, to FFF separation analysis to provide high resolution nanoparticle sizing and compositional analysis at the μg/L concentration level, a detection at least 10-100-fold lower than DLS or FFF-UV techniques. The full benefits are only achieved by utilization of all detector capabilities, such as dynamic reaction cell (DRC) ICP-MS. Such low-level detection and characterization capability is critical to nanomaterial investigations at biologically and environmentally relevant concentrations. The techniques have been modified and applied to characterization of all four elemental constituents of cadmium selenide-zinc sulfide core-shell quantum dots, and silver nanoparticles with gold seed cores. Additionally, sulfide coatings on silver nanoparticles can be detected as a potential means to determine environmental aging of nanoparticles.

摘要

纳米材料的特性分析必须同时包括尺寸和化学成分分析。许多分析技术,如动态光散射(DLS),能够测量悬浮纳米颗粒的尺寸,但无法提供颗粒成分的信息。虽然场流分级(FFF)是一种强大的纳米颗粒粒径分析技术,但与尺寸分离结合使用的常见检测器,包括紫外、光散射和荧光光谱法,无法提供所需的颗粒组成信息。此外,这些检测器不能直接响应纳米颗粒的质量浓度。本工作描述了在 FFF 分离分析中接口灵敏和元素特异性检测器(如电感耦合等离子体原子发射光谱和质谱)时所获得的优势,以在μg/L 浓度水平下实现高分辨率纳米颗粒粒径和组成分析,检测灵敏度比 DLS 或 FFF-UV 技术至少高 10-100 倍。只有充分利用所有检测器的功能,如动态反应池(DRC)ICP-MS,才能实现全部优势。这种低水平的检测和特性分析能力对于在生物和环境相关浓度下进行纳米材料研究至关重要。该技术已得到修改并应用于硒化镉-硫化锌核壳量子点的全部四种元素成分以及金核银纳米颗粒的特性分析。此外,还可以检测银纳米颗粒上的硫化物涂层,作为确定纳米颗粒环境老化的潜在手段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索