Key Laboratory of Modern Acoustics, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
State Key Laboratory of Acoustics, Chinese Academy of Sciences, Beijing 100190, China.
Nat Mater. 2015 Oct;14(10):1013-9. doi: 10.1038/nmat4393. Epub 2015 Aug 31.
Acoustic metamaterials offer great flexibility for manipulating sound waves and promise unprecedented functionality, ranging from transformation acoustics, super-resolution imaging to acoustic cloaking. However, the design of acoustic metamaterials with exciting functionality remains challenging with traditional approaches using classic acoustic elements such as Helmholtz resonators and membranes. Here we demonstrate an ultraslow-fluid-like particle with intense artificial Mie resonances for low-frequency airborne sound. Eigenstate analysis and effective parameter retrieval show two individual negative bands in the single-size unit cell, one of which exhibits a negative bulk modulus supported by the monopolar Mie resonance, whereas the other exhibits a negative mass density induced by the dipolar Mie resonance. The unique single-negative nature is used to develop an ultra-sparse subwavelength metasurface with high reflectance for low-frequency sound. We demonstrate a 0.15λ-thick, 15%-filling ratio metasurface with an insertion loss over 93.4%. The designed Mie resonators provide diverse routes to construct novel acoustic devices with versatile applications.
声超材料在声波操控方面具有极大的灵活性,有望实现前所未有的功能,包括变换声学、超分辨率成像和声隐身。然而,利用传统的声学元件(如亥姆霍兹共振器和膜片)设计具有激振功能的声超材料仍然具有挑战性。在这里,我们展示了一种具有强烈人工米氏共振的超慢流态粒子,用于低频空气传播声音。本征态分析和有效参数提取显示,在单个尺寸的单元中存在两个独立的负带,其中一个负体弹性模量由单极米氏共振支持,而另一个则由偶极米氏共振诱导的负质量密度引起。独特的单负性质被用于开发具有高反射率的超稀疏亚波长超表面,以实现低频声音的高反射率。我们展示了一个 0.15λ 厚、填充率为 15%的超表面,其插入损耗超过 93.4%。设计的米氏共振器为构建具有多种应用的新型声学器件提供了多种途径。