Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA.
Curr Opin Biotechnol. 2015 Dec;36:91-7. doi: 10.1016/j.copbio.2015.08.014. Epub 2015 Aug 28.
Metabolic pathway models provide the foundation for quantitative studies of cellular physiology through the measurement of intracellular metabolic fluxes. For model organisms metabolic models are well established, with many manually curated genome-scale model reconstructions, gene knockout studies and stable-isotope tracing studies. However, for non-model organisms a similar level of knowledge is often lacking. Compartmentation of cellular metabolism in eukaryotic systems also presents significant challenges for quantitative (13)C-metabolic flux analysis ((13)C-MFA). Recently, innovative (13)C-MFA approaches have been developed based on parallel labeling experiments, the use of multiple isotopic tracers and integrated data analysis, that allow more rigorous validation of pathway models and improved quantification of metabolic fluxes. Applications of these approaches open new research directions in metabolic engineering, biotechnology and medicine.
代谢途径模型通过测量细胞内代谢通量,为定量研究细胞生理学提供了基础。对于模式生物,代谢模型已经得到很好的建立,有许多经过精心整理的基因组规模的模型重建、基因敲除研究和稳定同位素示踪研究。然而,对于非模式生物,通常缺乏类似的知识。真核系统中细胞代谢的区室化也对定量(13)C-代谢通量分析((13)C-MFA)提出了重大挑战。最近,基于平行标记实验、使用多种同位素示踪剂和集成数据分析的创新(13)C-MFA 方法已经得到了发展,这些方法允许对途径模型进行更严格的验证,并提高代谢通量的定量能力。这些方法的应用为代谢工程、生物技术和医学开辟了新的研究方向。