Suppr超能文献

真核生物进化的概率模型:整合的时机

Probabilistic models of eukaryotic evolution: time for integration.

作者信息

Lartillot Nicolas

机构信息

Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Claude Bernard Lyon 1, F-69622 Villeurbanne Cedex, France

出版信息

Philos Trans R Soc Lond B Biol Sci. 2015 Sep 26;370(1678):20140338. doi: 10.1098/rstb.2014.0338.

Abstract

In spite of substantial work and recent progress, a global and fully resolved picture of the macroevolutionary history of eukaryotes is still under construction. This concerns not only the phylogenetic relations among major groups, but also the general characteristics of the underlying macroevolutionary processes, including the patterns of gene family evolution associated with endosymbioses, as well as their impact on the sequence evolutionary process. All these questions raise formidable methodological challenges, calling for a more powerful statistical paradigm. In this direction, model-based probabilistic approaches have played an increasingly important role. In particular, improved models of sequence evolution accounting for heterogeneities across sites and across lineages have led to significant, although insufficient, improvement in phylogenetic accuracy. More recently, one main trend has been to move away from simple parametric models and stepwise approaches, towards integrative models explicitly considering the intricate interplay between multiple levels of macroevolutionary processes. Such integrative models are in their infancy, and their application to the phylogeny of eukaryotes still requires substantial improvement of the underlying models, as well as additional computational developments.

摘要

尽管已经开展了大量工作并取得了近期进展,但真核生物宏观进化历史的全球完整图景仍在构建之中。这不仅涉及主要类群之间的系统发育关系,还包括潜在宏观进化过程的一般特征,包括与内共生相关的基因家族进化模式,以及它们对序列进化过程的影响。所有这些问题都带来了巨大的方法学挑战,需要更强大的统计范式。在这个方向上,基于模型的概率方法发挥了越来越重要的作用。特别是,考虑到位点间和谱系间异质性的改进序列进化模型,虽然还不够充分,但已显著提高了系统发育准确性。最近,一个主要趋势是从简单的参数模型和逐步方法转向明确考虑宏观进化过程多个层次之间复杂相互作用的综合模型。此类综合模型尚处于起步阶段,将其应用于真核生物系统发育仍需要对基础模型进行大幅改进,以及更多的计算进展。

相似文献

1
Probabilistic models of eukaryotic evolution: time for integration.真核生物进化的概率模型:整合的时机
Philos Trans R Soc Lond B Biol Sci. 2015 Sep 26;370(1678):20140338. doi: 10.1098/rstb.2014.0338.
7
BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis.BEAST 2.5:一个用于贝叶斯进化分析的高级软件平台。
PLoS Comput Biol. 2019 Apr 8;15(4):e1006650. doi: 10.1371/journal.pcbi.1006650. eCollection 2019 Apr.

引用本文的文献

1
Simultaneous Bayesian inference of phylogeny and molecular coevolution.系统发生和分子协同进化的同时贝叶斯推断。
Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):5027-5036. doi: 10.1073/pnas.1813836116. Epub 2019 Feb 26.
4
Causes of evolutionary rate variation among protein sites.蛋白质位点间进化速率变化的原因。
Nat Rev Genet. 2016 Feb;17(2):109-21. doi: 10.1038/nrg.2015.18. Epub 2016 Jan 19.
6
Rooting the tree of life: the phylogenetic jury is still out.探寻生命之树的根源:系统发育的定论仍未得出。
Philos Trans R Soc Lond B Biol Sci. 2015 Sep 26;370(1678):20140329. doi: 10.1098/rstb.2014.0329.
7
Changing ideas about eukaryotic origins.关于真核生物起源的观念转变。
Philos Trans R Soc Lond B Biol Sci. 2015 Sep 26;370(1678):20140318. doi: 10.1098/rstb.2014.0318.

本文引用的文献

1
A review of long-branch attraction.长枝吸引现象综述。
Cladistics. 2005 Apr;21(2):163-193. doi: 10.1111/j.1096-0031.2005.00059.x.
3
Maximum likelihood inference of reticulate evolutionary histories.网状进化历史的最大似然推断
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16448-53. doi: 10.1073/pnas.1407950111. Epub 2014 Nov 3.
5
The inference of gene trees with species trees.基于物种树推断基因树。
Syst Biol. 2015 Jan;64(1):e42-62. doi: 10.1093/sysbio/syu048. Epub 2014 Jul 28.
6
7
A Bayesian method for analyzing lateral gene transfer.贝叶斯方法分析侧向基因转移。
Syst Biol. 2014 May;63(3):409-20. doi: 10.1093/sysbio/syu007. Epub 2014 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验