School of Civil and Environmental Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798.
Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551.
Environ Sci Technol. 2015 Oct 6;49(19):11551-9. doi: 10.1021/acs.est.5b03381. Epub 2015 Sep 10.
Comamonas is one of the most abundant microorganisms in biofilm communities driving wastewater treatment. Little has been known about the role of this group of organisms and their biofilm mode of life. In this study, using Comamonas testosteroni as a model organism, we demonstrated the involvement of Comamonas biofilms in denitrification under bulk aerobic conditions and elucidated the influence of nitrate respiration on its biofilm lifestyle. Our results showed that C. testosteroni could use nitrate as the sole electron acceptor for anaerobic growth. Under bulk aerobic condition, biofilms of C. testosteroni were capable of reducing nitrate, and intriguingly, nitrate reduction significantly enhanced viability of the biofilm-cells and reduced cell detachment from the biofilms. Nitrate respiration was further shown to play an essential role in maintaining high cell viability in the biofilms. RNA-seq analysis, quantitative polymerase chain reaction, and liquid chromatography-mass spectrometry revealed a higher level of bis(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) in cells respiring on nitrate than those grown aerobically (1.3 × 10(-4) fmol/cell vs 7.9 × 10(-6) fmol/cell; P < 0.01). C-di-GMP is one universal signaling molecule that regulates the biofilm mode of life, and a higher c-di-GMP concentration reduces cell detachment from biofilms. Taking these factors together, this study reveals that nitrate reduction occurs in mature biofilms of C. testosteroni under bulk aerobic conditions, and the respiratory reduction of nitrate is beneficial to the biofilm lifestyle by providing more metabolic energy to maintain high viability and a higher level of c-di-GMP to reduce cell detachment.
粪产碱菌是生物膜群落中驱动废水处理的最丰富的微生物之一。对于这组生物及其生物膜生活方式的作用,人们知之甚少。在这项研究中,我们以粪产碱单胞菌为模式生物,证明了粪产碱菌生物膜在好氧条件下的反硝化作用,并阐明了硝酸盐呼吸对其生物膜生活方式的影响。我们的结果表明,粪产碱单胞菌可以利用硝酸盐作为唯一的电子受体进行厌氧生长。在好氧条件下,粪产碱单胞菌生物膜能够还原硝酸盐,有趣的是,硝酸盐还原显著增强了生物膜细胞的活力,并减少了细胞从生物膜上的脱落。硝酸盐呼吸进一步被证明在维持生物膜中高细胞活力方面起着至关重要的作用。RNA-seq 分析、定量聚合酶链反应和液相色谱-质谱分析显示,呼吸硝酸盐的细胞中二鸟苷酸环化四磷酸(c-di-GMP)的水平高于好氧生长的细胞(1.3×10^(-4) fmol/细胞比 7.9×10^(-6) fmol/细胞;P<0.01)。c-di-GMP 是一种普遍的信号分子,调节生物膜生活方式,较高的 c-di-GMP 浓度可减少细胞从生物膜上的脱落。综合这些因素,本研究揭示了在好氧条件下,成熟的粪产碱单胞菌生物膜中会发生硝酸盐还原,呼吸还原硝酸盐通过提供更多代谢能量来维持高活力和更高水平的 c-di-GMP 来减少细胞脱落,从而有利于生物膜生活方式。