Sohail Manzar, De Marco Roland, Jarolímová Zdeňka, Pawlak Marcin, Bakker Eric, He Ning, Latonen Rose-Marie, Lindfors Tom, Bobacka Johan
Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast , 90 Sippy Downs Drive, Sippy Downs, Queensland 4556, Australia.
School of Chemistry and Molecular Biosciences, The University of Queensland , Brisbane, Queensland 4072, Australia.
Langmuir. 2015 Sep 29;31(38):10599-609. doi: 10.1021/acs.langmuir.5b01693. Epub 2015 Sep 14.
The transportation and accumulation of redox active species at the buried interface between glassy carbon electrodes and plasticized polymeric membranes have been studied using synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS), near edge X-ray absorption fine structure (NEXAFS), in situ electrochemical Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy, cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). Ferrocene tagged poly(vinyl chloride) [FcPVC], ferrocene (Fc), and its derivatives together with tetracyanoquinodimethane (TCNQ) doped plasticized polymeric membrane electrodes have been investigated, so as to extend the study of the mechanism of this reaction chemistry to different time scales (both small and large molecules with variable diffusion coefficients) using a range of complementary electrochemical and surface analysis techniques. This study also provides direct spectroscopic evidence for the transportation and electrochemical reactivity of redox active species, regardless of the size of the electrochemically reactive molecule, at the buried interface of the substrate electrode. With all redox dopants, when CA electrolysis was performed, redox active species were undetectable (<1 wt % of signature elements or below the detection limit of SR-XPS and NEXAFS) in the outermost surface layers of the membrane, while a high concentration of redox species was located at the electrode substrate as a consequence of the deposition of the reaction product (Fc(+)-anion complex) at the buried interface between the electrode and the membrane. This reaction chemistry for redox active species within plasticized polymeric membranes may be useful in the fashioning of multilayered polymeric devices (e.g., chemical sensors, organic electronic devices, protective laminates, etc.) based on an electrochemical tunable deposition of redox molecules at the buried substrate electrode beneath the membrane.
利用同步辐射X射线光电子能谱(SR-XPS)、近边X射线吸收精细结构(NEXAFS)、原位电化学傅里叶变换红外衰减全反射(FTIR-ATR)光谱、循环伏安法(CV)、计时电流法(CA)和电化学阻抗谱(EIS),研究了氧化还原活性物种在玻碳电极与增塑聚合物膜之间的掩埋界面处的传输和积累。研究了二茂铁标记的聚氯乙烯[FcPVC]、二茂铁(Fc)及其衍生物与四氰基对苯二醌二甲烷(TCNQ)掺杂的增塑聚合物膜电极,以便使用一系列互补的电化学和表面分析技术,将这种反应化学机理的研究扩展到不同的时间尺度(具有可变扩散系数的小分子和大分子)。这项研究还提供了直接的光谱证据,证明氧化还原活性物种在基底电极的掩埋界面处的传输和电化学反应活性,而与电化学反应性分子的大小无关。对于所有氧化还原掺杂剂,当进行CA电解时,在膜的最外层表面层中检测不到氧化还原活性物种(<特征元素的1 wt%或低于SR-XPS和NEXAFS的检测限),而由于反应产物(Fc(+)-阴离子络合物)在电极与膜之间的掩埋界面处沉积,高浓度的氧化还原物种位于电极基底处。增塑聚合物膜内氧化还原活性物种的这种反应化学,可能有助于基于膜下掩埋基底电极处氧化还原分子的电化学可调沉积来制造多层聚合物器件(例如化学传感器、有机电子器件、防护层压板等)。