Nag Mayurakshi, Poria Swarup
Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009, India.
Chaos. 2015 Aug;25(8):083114. doi: 10.1063/1.4928740.
The synchronization behavior of coupled chaotic discontinuous maps over a ring network with dynamic random connections is reported in this paper. It is observed that random rewiring stabilizes one of the two strongly unstable fixed points of the local map. Depending on initial conditions, the network synchronizes to different unstable fixed points, which signifies the existence of synchronized multistability in the complex network. Moreover, the length of discontinuity of the local map has an important role in generating windows of different synchronized fixed points. Synchronized fixed point and synchronized periodic orbits are found in the network depending on coupling strength and different parameter values of the local map. We have identified the existence of period subtracting bifurcation with respect to coupling strength in the network. The range of coupling strength for the occurrence of synchronized multistable spatiotemporal fixed points is determined. This range strongly depends upon the dynamic rewiring probability and also on the local map.
本文报道了具有动态随机连接的环形网络上耦合混沌不连续映射的同步行为。据观察,随机重新布线使局部映射的两个强不稳定不动点之一稳定下来。根据初始条件,网络会同步到不同的不稳定不动点,这表明复杂网络中存在同步多稳态。此外,局部映射的不连续长度在生成不同同步不动点的窗口方面起着重要作用。根据耦合强度和局部映射的不同参数值,在网络中发现了同步不动点和同步周期轨道。我们确定了网络中相对于耦合强度存在周期减法分岔。确定了同步多稳态时空不动点出现的耦合强度范围。该范围强烈依赖于动态重新布线概率以及局部映射。