Changala P Bryan, Baraban Joshua H, Merer Anthony J, Field Robert W
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
J Chem Phys. 2015 Aug 28;143(8):084310. doi: 10.1063/1.4929588.
We report novel experimental strategies that should prove instrumental in extending the vibrational and rotational assignments of the S1 state of acetylene, C2H2, in the region of the cis-trans isomerization barrier. At present, the assignments are essentially complete up to ∼500 cm(-1) below the barrier. Two difficulties arise when the assignments are continued to higher energies. One is that predissociation into C2H + H sets in roughly 1100 cm(-1) below the barrier; the resulting quenching of laser-induced fluorescence (LIF) reduces its value for recording spectra in this region. The other difficulty is that tunneling through the barrier causes a staggering in the K-rotational structure of isomerizing vibrational levels. The assignment of these levels requires data for K values up to at least 3. Given the rotational selection rule K' - ℓ('') = ± 1, such data must be obtained via excited vibrational levels of the ground state with ℓ('') > 0. In this paper, high resolution H-atom resonance-enhanced multiphoton ionization spectra are demonstrated to contain predissociated bands which are almost invisible in LIF spectra, while preliminary data using a hyperthermal pulsed nozzle show that ℓ('') = 2 states can be selectively populated in a jet, giving access to K' = 3 states in IR-UV double resonance.