Suppr超能文献

用于放射治疗加速器电子束的永磁能量谱仪。

Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators.

作者信息

McLaughlin David J, Hogstrom Kenneth R, Carver Robert L, Gibbons John P, Shikhaliev Polad M, Matthews Kenneth L, Clarke Taylor, Henderson Alexander, Liang Edison P

机构信息

Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001.

Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809-3482 and Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001.

出版信息

Med Phys. 2015 Sep;42(9):5517-29. doi: 10.1118/1.4928674.

Abstract

PURPOSE

The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams.

METHODS

An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7-20 MeV) of an Elekta Infinity radiotherapy accelerator.

RESULTS

Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration plots of peak mean energy versus peak mean position of the net mean dose profiles for each of the seven electron beams followed the shape predicted by the Lorentz force law for a uniform z-component of the magnetic field, validating its being modeled as uniform (0.542 ± 0.027 T). Measured Elekta energy spectra and their peak mean energies correlated with the 0.5-cm (7-13 MeV) and the 1.0-cm (13-20 MeV) R90 spacings of the %DD curves. The full-width-half-maximum of the energy spectra decreased with decreasing peak mean energy with the exception of the 9-MeV beam, which was anomalously wide. Similarly, R80-20 decreased linearly with peak mean energy with the exception of the 9 MeV beam. Both were attributed to suboptimal tuning of the high power phase shifter for the recycled radiofrequency power reentering the traveling wave accelerator.

CONCLUSIONS

The apparatus and analysis techniques of the authors demonstrated that an inexpensive, lightweight, permanent magnet electron energy spectrometer can be used for measuring the electron energy distributions of therapeutic electron beams (6-20 MeV). The primary goal of future work is to develop a real-time spectrometer by incorporating a real-time imager, which has potential applications such as beam matching, ongoing beam tune maintenance, and measuring spectra for input into Monte Carlo beam calculations.

摘要

目的

本研究旨在改造一种轻型永磁电子能谱仪,用于测量治疗性电子束的能谱。

方法

针对一台约0.54 T的永磁偶极磁谱仪,开发了一种照射几何结构和测量技术,以便在计算机X线摄影(CR)磷光板上产生合适的潜像。双针孔电子准直器产生一束直径0.318 cm、近似平行的电子束入射到谱仪上,并在图像平面(CR板位置)形成合适的剂量率。潜像中的X射线本底通过针孔准直器之间一块7.62 cm厚的铅块得以降低,然后采用拟合技术去除。理论能量依赖型探测器响应函数(DRF)用于一种迭代技术,将CR板净平均剂量分布转换为谱仪入口中心轴上的能谱。通过校正电子散射的能量依赖性,将这些能谱转换为源到准直器距离(SCD)为95 cm时的能谱。通过比较净平均剂量分布中的峰值平均位置对谱仪进行校准,最初是与根据中心轴百分深度剂量(%DD)曲线的实际射程确定的峰值平均能量进行比较,然后是与考虑准直如何改变能谱的峰值平均能量进行比较(重新校准)。通过测量医科达Infinity放射治疗加速器的七束电子束(7 - 20 MeV)的能谱,证明了该谱仪的实用性。

结果

DRF曲线表明其依赖于成像平面中的能量和位置。通过大约15次迭代,根据测量得到的净平均剂量分布求解出谱仪入口处的能谱。将这些能谱转换为SCD为95 cm时的能谱,增加了能谱的低能尾部,同时相应降低了峰值并使其向稍低能量处移动。七束电子束各自的净平均剂量分布的峰值平均能量与峰值平均位置的能量校准曲线遵循由磁场均匀z分量下的洛伦兹力定律预测的形状,验证了其可建模为均匀磁场(0.542 ± 0.027 T)。测量得到的医科达能谱及其峰值平均能量与%DD曲线的0.5 cm(7 - 13 MeV)和1.0 cm(13 - 20 MeV)R90间距相关。能谱的半高宽随峰值平均能量降低而减小,但9 MeV电子束除外,其半高宽异常宽。同样,R80 - 20随峰值平均能量线性降低,但9 MeV电子束除外。这两者均归因于再循环射频功率重新进入行波加速器时高功率移相器的调谐欠佳。

结论

作者的仪器和分析技术表明,一种廉价、轻型的永磁电子能谱仪可用于测量治疗性电子束(6 - 20 MeV)的电子能量分布。未来工作的主要目标是通过集成实时成像器开发一种实时谱仪,其具有诸如束流匹配、持续束流调谐维护以及测量能谱以输入蒙特卡罗束流计算等潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验