Patel N, Branch D W, Schamiloglu E, Cular S
Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
Department of Electrical and Computer Engineering, MSC01 1100, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA.
Rev Sci Instrum. 2015 Aug;86(8):085001. doi: 10.1063/1.4927713.
A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz-100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10-273 ps for DC voltages and 189-813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250-2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115-1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.
进行了Y + 36°与0°X切铌酸锂(LiNbO3)的对比研究,以评估晶体切割对声传播的影响,从而实现一种压电高压传感器。在施加直流(DC)、交流(AC)和脉冲电压时,测量了每种晶体切割的声飞行时间。结果表明,对于施加到X切晶体上的直流和交流电压,电压引起的声波传播时间偏移与电压呈二次方比例关系。对于Y + 36°晶体,电压引起的偏移与直流电压呈线性比例关系,与交流电压呈二次方比例关系。当对两种晶体施加5 μs电压脉冲时,电压引起的偏移与电压呈线性比例关系。对于Y + 36°切割,在100 Hz - 100 kHz频率范围内,施加直流电压时电压引起的偏移范围为10至54 ps,施加640 V交流电压时为35至778 ps。在与Y + 36°切割相同的条件下,0°X切晶体在施加直流电压时感应到的偏移为10 - 273 ps,施加交流电压时为189 - 813 ps。对于5 μs电压脉冲,0°X切晶体感应到的电压引起的偏移为0.250 - 2 ns,Y + 36°切割晶体感应到的时间偏移为0.115 - 1.6 ns。这表明对电压存在频率敏感响应,在直流、交流或脉冲电压条件下,晶体切割的影响并非主要因素。将测量的直流数据与一维阻抗矩阵模型进行比较,但该模型预测的增量长度随电压变化。当通过物理建模从不确定度预算中消除电压源误差时,对于本实验中使用的所有电压条件,使用Y + 36°切割晶体时传感器的合成不确定度(在95%置信区间内)降至0.0033%,使用X切割晶体时降至0.0032%。