Suppr超能文献

喹诺酮衍生物作为抗疟药物提高其治疗指数的计算研究:定量构效关系和定量构性关系

Computational Study of Quinolone Derivatives to Improve their Therapeutic Index as Anti-malaria Agents: QSAR and QSTR.

作者信息

Iman Maryam, Davood Asghar, Khamesipour Ali

机构信息

Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.

Department of Medicinal Chemistry, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran (IAUPS).

出版信息

Iran J Pharm Res. 2015 Summer;14(3):775-84.

Abstract

Malaria is a parasitic disease caused by five different species of Plasmodium. More than 40% of the world's population is at risk and malaria annual incidence is estimated to be more than two hundred million, malaria is one of the most important public health problems especially in children of the poorest parts of the world, annual mortality is about 1 million. The epidemiological status of the disease justifies to search for control measures, new therapeutic options and development of an effective vaccine. Chemotherapy options in malaria are limited, moreover, drug resistant rate is high. In spite of global efforts to develop an effective vaccine yet there is no vaccine available. In the current study, a series of quinolone derivatives were subjected to quantitative structure activity relationship (QSAR) and quantitative structure toxicity relationship (QSTR) analyses to identify the ideal physicochemical characteristics of potential anti-malaria activity and less cytotoxicity. Quinolone with desirable properties was built using HyperChem program, and conformational studies were performed through the semi-empirical method followed by the PM3 force field. Multi linear regression (MLR) was used as a chemo metric tool for quantitative structure activity relationship modeling and the developed models were shown to be statistically significant according to the validation parameters. The obtained QSAR model reveals that the descriptors PJI2, Mv, PCR, nBM, and VAR mainly affect the anti-malaria activity and descriptors MSD, MAXDP, and X1sol affect the cytotoxicity of the series of ligands.

摘要

疟疾是一种由五种不同疟原虫引起的寄生虫病。世界上超过40%的人口面临感染风险,据估计疟疾的年发病率超过两亿,疟疾是最重要的公共卫生问题之一,尤其是在世界最贫困地区的儿童中,每年的死亡率约为100万。该疾病的流行病学状况促使人们寻找控制措施、新的治疗方法以及研发有效的疫苗。疟疾的化疗方法有限,而且耐药率很高。尽管全球致力于研发有效的疫苗,但目前尚无可用疫苗。在本研究中,对一系列喹诺酮衍生物进行了定量构效关系(QSAR)和定量构毒关系(QSTR)分析,以确定具有潜在抗疟疾活性且细胞毒性较小的理想物理化学特性。使用HyperChem程序构建具有理想性质的喹诺酮,并通过半经验方法和PM3力场进行构象研究。多元线性回归(MLR)被用作定量构效关系建模的化学计量工具,根据验证参数,所建立的模型具有统计学意义。所获得的QSAR模型表明,描述符PJI2、Mv、PCR、nBM和VAR主要影响抗疟疾活性,描述符MSD、MAXDP和X1sol影响该系列配体的细胞毒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e4/4518106/2f04c79ce9a4/ijpr-14-775-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验