Suppr超能文献

基于扩散张量成像的脑结构连接组的可重复性

Reproducibility of the Structural Brain Connectome Derived from Diffusion Tensor Imaging.

作者信息

Bonilha Leonardo, Gleichgerrcht Ezequiel, Fridriksson Julius, Rorden Chris, Breedlove Jesse L, Nesland Travis, Paulus Walter, Helms Gunther, Focke Niels K

机构信息

Department of Neurology, Medical University of South Carolina, Charleston, SC, United States of America.

Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States of America.

出版信息

PLoS One. 2015 Sep 2;10(8):e0135247. doi: 10.1371/journal.pone.0135247. eCollection 2015.

Abstract

RATIONALE

Disruptions of brain anatomical connectivity are believed to play a central role in several neurological and psychiatric illnesses. The structural brain connectome is typically derived from diffusion tensor imaging (DTI), which may be influenced by methodological factors related to signal processing, MRI scanners and biophysical properties of neuroanatomical regions. In this study, we evaluated how these variables affect the reproducibility of the structural connectome.

METHODS

Twenty healthy adults underwent 3 MRI scanning sessions (twice in the same MRI scanner and a third time in a different scanner unit) within a short period of time. The scanning sessions included similar T1 weighted and DTI sequences. Deterministic or probabilistic tractography was performed to assess link weight based on the number of fibers connecting gray matter regions of interest (ROI). Link weight and graph theory network measures were calculated and reproducibility was assessed through intra-class correlation coefficients, assuming each scanning session as a rater.

RESULTS

Connectome reproducibility was higher with data from the same scanner. The probabilistic approach yielded larger reproducibility, while the individual variation in the number of tracked fibers from deterministic tractography was negatively associated with reproducibility. Links connecting larger and anatomically closer ROIs demonstrated higher reproducibility. In general, graph theory measures demonstrated high reproducibility across scanning sessions.

DISCUSSION

Anatomical factors and tractography approaches can influence the reproducibility of the structural connectome and should be factored in the interpretation of future studies. Our results demonstrate that connectome mapping is a largely reproducible technique, particularly as it relates to the geometry of network architecture measured by graph theory methods.

摘要

原理

大脑解剖学连接的破坏被认为在多种神经和精神疾病中起核心作用。大脑结构连接组通常源自扩散张量成像(DTI),而这可能会受到与信号处理、MRI扫描仪以及神经解剖区域生物物理特性相关的方法学因素的影响。在本研究中,我们评估了这些变量如何影响结构连接组的可重复性。

方法

20名健康成年人在短时间内接受了3次MRI扫描(两次在同一台MRI扫描仪中,第三次在不同的扫描仪单元中)。扫描过程包括相似的T1加权和DTI序列。基于连接感兴趣灰质区域(ROI)的纤维数量,进行确定性或概率性纤维束成像以评估连接权重。计算连接权重和图论网络测量值,并通过类内相关系数评估可重复性,将每次扫描过程视为一个评分者。

结果

来自同一台扫描仪的数据的连接组可重复性更高。概率性方法产生的可重复性更大,而确定性纤维束成像中追踪纤维数量的个体差异与可重复性呈负相关。连接更大且解剖位置更近的ROI的连接显示出更高的可重复性。总体而言,图论测量值在各次扫描过程中显示出较高的可重复性。

讨论

解剖学因素和纤维束成像方法会影响结构连接组的可重复性,在未来研究的解释中应予以考虑。我们的结果表明,连接组映射是一种在很大程度上可重复的技术,特别是在涉及通过图论方法测量的网络架构几何结构方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49f6/4557836/fbfbfba5a1a1/pone.0135247.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验