Suppr超能文献

CoCoNest:基于连续结构连通性的人类大脑皮质分区嵌套家族。

CoCoNest: A continuous structural connectivity-based nested family of parcellations of the human cerebral cortex.

作者信息

Allen Adrian, Zhang Zhengwu, Nobel Andrew

机构信息

Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Netw Neurosci. 2024 Dec 10;8(4):1439-1466. doi: 10.1162/netn_a_00409. eCollection 2024.

Abstract

Despite the widespread exploration and availability of parcellations for the functional connectome, parcellations designed for the structural connectome are comparatively limited. Current research suggests that there may be no single "correct" parcellation and that the human brain is intrinsically a multiresolution entity. In this work, we propose the Continuous Structural Connectivitity-based, Nested (CoCoNest) family of parcellations-a fully data-driven, multiresolution family of parcellations derived from structural connectome data. The CoCoNest family is created using agglomerative (bottom-up) clustering and error-complexity pruning, which strikes a balance between the complexity of each parcellation and how well it preserves patterns in vertex-level, high-resolution connectivity data. We draw on a comprehensive battery of internal and external evaluation metrics to show that the CoCoNest family is competitive with or outperforms widely used parcellations in the literature. Additionally, we show how the CoCoNest family can serve as an exploratory tool for researchers to investigate the multiresolution organization of the structural connectome.

摘要

尽管针对功能连接组的脑区划分已得到广泛探索且易于获取,但为结构连接组设计的脑区划分相对有限。当前研究表明,可能不存在单一的“正确”脑区划分,并且人类大脑本质上是一个多分辨率实体。在这项工作中,我们提出了基于连续结构连接性的嵌套(CoCoNest)脑区划分家族——这是一个完全由数据驱动的、从结构连接组数据中派生出来的多分辨率脑区划分家族。CoCoNest家族是通过凝聚式(自下而上)聚类和误差复杂度修剪创建的,它在每个脑区划分的复杂度与它在顶点级高分辨率连接数据中保留模式的程度之间取得了平衡。我们利用一系列全面的内部和外部评估指标来表明,CoCoNest家族与文献中广泛使用的脑区划分相比具有竞争力或更优。此外,我们展示了CoCoNest家族如何能够作为一种探索工具,供研究人员研究结构连接组的多分辨率组织。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec8/11675023/4d7288e7c29d/netn-8-4-1439-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验