Dutta Siddhartha, Cruz Jeffrey A, Jiao Yuhua, Chen Jin, Kramer David M, Osteryoung Katherine W
Department of Plant Biology, Michigan State University, East Lansing, MI, 48824-1312, USA.
MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824-1312, USA.
Plant J. 2015 Oct;84(2):428-42. doi: 10.1111/tpj.13009.
Leaf chloroplast movement is thought to optimize light capture and to minimize photodamage. To better understand the impact of chloroplast movement on photosynthesis, we developed a technique based on the imaging of reflectance from leaf surfaces that enables continuous, high-sensitivity, non-invasive measurements of chloroplast movement in multiple intact plants under white actinic light. We validated the method by measuring photorelocation responses in Arabidopsis chloroplast division mutants with drastically enlarged chloroplasts, and in phototropin mutants with impaired photorelocation but normal chloroplast morphology, under different light regimes. Additionally, we expanded our platform to permit simultaneous image-based measurements of chlorophyll fluorescence and chloroplast movement. We show that chloroplast division mutants with enlarged, less-mobile chloroplasts exhibit greater photosystem II photodamage than is observed in the wild type, particularly under fluctuating high levels of light. Comparison between division mutants and the severe photorelocation mutant phot1-5 phot2-1 showed that these effects are not entirely attributable to diminished photorelocation responses, as previously hypothesized, implying that altered chloroplast morphology affects other photosynthetic processes. Our dual-imaging platform also allowed us to develop a straightforward approach to correct non-photochemical quenching (NPQ) calculations for interference from chloroplast movement. This correction method should be generally useful when fluorescence and reflectance are measured in the same experiments. The corrected data indicate that the energy-dependent (qE) and photoinhibitory (qI) components of NPQ contribute differentially to the NPQ phenotypes of the chloroplast division and photorelocation mutants. This imaging technology thus provides a platform for analyzing the contributions of chloroplast movement, chloroplast morphology and other phenotypic attributes to the overall photosynthetic performance of higher plants.
叶片叶绿体运动被认为可以优化光捕获并将光损伤降至最低。为了更好地理解叶绿体运动对光合作用的影响,我们开发了一种基于叶片表面反射成像的技术,该技术能够在白色光化光下对多株完整植物中的叶绿体运动进行连续、高灵敏度、非侵入性测量。我们通过在不同光照条件下测量拟南芥叶绿体分裂突变体(叶绿体大幅增大)和光定位突变体(光定位受损但叶绿体形态正常)的光重新定位反应来验证该方法。此外,我们扩展了我们的平台,以允许同时基于图像测量叶绿素荧光和叶绿体运动。我们发现,叶绿体增大且移动性较低的叶绿体分裂突变体比野生型表现出更大的光系统II光损伤,尤其是在波动的高强度光照下。分裂突变体与严重光定位突变体phot1-5 phot2-1的比较表明,这些影响并不完全如先前假设的那样完全归因于光重新定位反应减弱,这意味着叶绿体形态的改变会影响其他光合过程。我们的双成像平台还使我们能够开发一种直接的方法来校正叶绿体运动干扰下的非光化学猝灭(NPQ)计算。当在同一实验中测量荧光和反射率时,这种校正方法通常会很有用。校正后的数据表明,NPQ的能量依赖性(qE)和光抑制性(qI)成分对叶绿体分裂和光定位突变体的NPQ表型贡献不同。因此,这种成像技术为分析叶绿体运动、叶绿体形态和其他表型属性对高等植物整体光合性能的贡献提供了一个平台。