O. Y. Gasheva: Department of Medical Physiology, College of Medicine, Cardiovascular Research Institute Division of Lymphatic Biology, Texas A&M Health Science Center, 702 SW H.K. Dodgen Loop, Temple, TX 76504, USA.
J Physiol. 2013 Sep 15;591(18):4549-65. doi: 10.1113/jphysiol.2013.258681. Epub 2013 Jul 8.
We have previously demonstrated a principal role for nitric oxide (NO) in the endothelium/shear-dependent regulation of contractility in rat thoracic duct (TD). In this study we tested the hypothesis that cyclic guanosine monophosphate (cGMP) and the dependent protein kinase (PKG) are central to the intrinsic and extrinsic flow-dependent modulation of lymphatic contractility. Lymphatic diameters and indices of pumping in isolated, cannulated and pressurized segments of rat TD were measured. The influences of increased transmural pressure (1-5 cmH2O) and imposed flow (1-5 cm H2O transaxial pressure gradients) on lymphatic function were studied before and after: (1) inhibition of guanylate cyclase (GC) with and without a NO donor; (2) application of stable cGMP analogue; and (3) inhibition of the cGMP activation of PKG. Additionally, Western blotting and immunofluorescent tissue staining were used to analyse the PKG isoforms expressed in TD. We found that the GC inhibitor ODQ induced changes in TD contractility similar to NO synthase blockade and prevented the relaxation induced by the NO donor S-nitroso-N-acetylpenicillamine. The cGMP analogue, 8-(4-Chlorophenylthio)-guanosine 3,5-cyclic monophosphate sodium salt (8pCPTcGMP), mimicked the extrinsic flow-induced relaxation in a dose-dependent manner, whereas treatment with the cGMP/PKG inhibitor, guanosine 3,5-cyclic monophosphorothioate, 8-(4-chlorophenylthio)-, Rp-isomer, triethylammonium salt (Rp-8-Br-PETcGMPS), eliminated intrinsic flow-dependent relaxation, and largely inhibited extrinsic flow-dependent relaxation. Western blotting demonstrated that both PKG-Iα and -Iβ isoforms are found in TD, with ∼10 times greater expression of the PKG-Iα protein in TD compared with the aorta and vena cava. The PKG-Iβ isoform expressed equally in TD and vena cava, both being ∼2 times higher than that in the aorta. Immunofluorescent labelling of PKG-Iα protein in the wall of rat thoracic duct confirmed its localization inside TD muscle cells. These findings demonstrate that cGMP is critical to the flow-dependent regulation of TD contractility; they also indicate an important involvement of PKG, especially PKG-Iα in these processes and identifies PKG protein as a potential therapeutic target.
我们之前已经证明了一氧化氮(NO)在大鼠胸导管(TD)的内皮细胞/切变依赖性收缩调节中起着主要作用。在这项研究中,我们假设环鸟苷酸(cGMP)和依赖蛋白激酶(PKG)是内在和外在流动依赖性淋巴管收缩调节的核心。我们测量了分离的、插管的和加压的大鼠 TD 段的淋巴管直径和泵送指数。研究了增加跨壁压(1-5 cmH2O)和施加的流量(1-5 cm H2O 横轴压力梯度)对淋巴管功能的影响,这些影响在以下情况下进行了研究:(1)用和不用一氧化氮供体抑制鸟苷酸环化酶(GC);(2)应用稳定的 cGMP 类似物;(3)抑制 cGMP 激活 PKG。此外,还使用 Western blot 和免疫荧光组织染色分析了 TD 中表达的 PKG 同工型。我们发现,GC 抑制剂 ODQ 诱导的 TD 收缩变化与一氧化氮合酶阻断相似,并阻止了 NO 供体 S-亚硝基-N-乙酰青霉胺诱导的松弛。cGMP 类似物 8-(4-氯苯硫基)-鸟苷 3,5-环单磷酸钠盐(8pCPTcGMP)以剂量依赖性方式模拟了外在流动诱导的松弛,而 cGMP/PKG 抑制剂 3,5-环单磷酸鸟苷硫代磷酸,8-(4-氯苯硫基)-,Rp-异,三乙铵盐(Rp-8-Br-PETcGMPS)的处理消除了内在流动依赖性松弛,并在很大程度上抑制了外在流动依赖性松弛。Western blot 显示,PKG-Iα 和 -Iβ 同工型都存在于 TD 中,与主动脉和腔静脉相比,TD 中 PKG-Iα 蛋白的表达约高 10 倍。PKG-Iβ 同工型在 TD 和腔静脉中的表达相等,均比主动脉高 2 倍。用大鼠胸导管壁的 PKG-Iα 蛋白进行免疫荧光标记证实了其在 TD 肌细胞内的定位。这些发现表明 cGMP 对 TD 收缩的流动依赖性调节至关重要;它们还表明 PKG,特别是 PKG-Iα 在这些过程中起着重要作用,并确定了 PKG 蛋白作为潜在的治疗靶点。