Jacob Pedro F, Hedwig Berthold
Department of Zoology, University of Cambridge, Cambridge, United Kingdom; and Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal.
Department of Zoology, University of Cambridge, Cambridge, United Kingdom; and
J Neurophysiol. 2015 Nov;114(5):2649-60. doi: 10.1152/jn.00669.2015. Epub 2015 Sep 2.
The cercal system of crickets detects low-frequency air currents produced by approaching predators and self-generated air currents during singing, which may provide sensory feedback to the singing motor network. We analyzed the effect of cercal stimulation on singing motor pattern generation to reveal the response of a singing interneuron to predator-like signals and to elucidate the possible role of self-generated air currents during singing. In fictive singing males, we recorded an interneuron of the singing network while applying air currents to the cerci; additionally, we analyzed the effect of abolishing the cercal system in freely singing males. In fictively singing crickets, the effect of short air stimuli is either to terminate prematurely or to lengthen the interchirp interval, depending on their phase in the chirp cycle. Within our stimulation paradigm, air stimuli of different velocities and durations always elicited an inhibitory postsynaptic potential in the singing interneuron. Current injection in the singing interneuron elicited singing motor activity, even during the air current-evoked inhibitory input from the cercal pathway. The disruptive effects of air stimuli on the fictive singing pattern and the inhibitory response of the singing interneuron point toward the cercal system being involved in initiating avoidance responses in singing crickets, according to the established role of cerci in a predator escape pathway. After abolishing the activity of the cercal system, the timing of natural singing activity was not significantly altered. Our study provides no evidence that self-generated cercal sensory activity has a feedback function for singing motor pattern generation.
蟋蟀的尾须系统能检测到接近的捕食者产生的低频气流以及鸣叫时自身产生的气流,这可能为鸣叫运动网络提供感觉反馈。我们分析了尾须刺激对鸣叫运动模式产生的影响,以揭示鸣叫中间神经元对类似捕食者信号的反应,并阐明鸣叫时自身产生的气流可能发挥的作用。在模拟鸣叫的雄性蟋蟀中,我们在向尾须施加气流时记录鸣叫网络的一个中间神经元;此外,我们还分析了在自由鸣叫的雄性蟋蟀中去除尾须系统的影响。在模拟鸣叫的蟋蟀中,短暂空气刺激的效果要么是过早终止,要么是延长鸣叫间隔,这取决于它们在鸣叫周期中的相位。在我们的刺激模式下,不同速度和持续时间的空气刺激总是在鸣叫中间神经元中引发抑制性突触后电位。即使在来自尾须通路的气流诱发抑制性输入期间,向鸣叫中间神经元注入电流也能引发鸣叫运动活动。根据尾须在捕食者逃逸通路中的既定作用,空气刺激对模拟鸣叫模式的破坏作用以及鸣叫中间神经元的抑制反应表明尾须系统参与引发鸣叫蟋蟀的回避反应。去除尾须系统的活动后,自然鸣叫活动的时间没有显著改变。我们的研究没有提供证据表明自身产生的尾须感觉活动对鸣叫运动模式的产生具有反馈功能。