Tadros M A, Lim R, Hughes D I, Brichta A M, Callister R J
School of Biomedical Sciences & Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia; and.
Spinal Cord Research Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
J Neurophysiol. 2015 Nov;114(5):2661-71. doi: 10.1152/jn.00682.2015. Epub 2015 Sep 2.
The spinal cord is critical for modifying and relaying sensory information to, and motor commands from, higher centers in the central nervous system to initiate and maintain contextually relevant locomotor responses. Our understanding of how spinal sensorimotor circuits are established during in utero development is based largely on studies in rodents. In contrast, there is little functional data on the development of sensory and motor systems in humans. Here, we use patch-clamp electrophysiology to examine the development of neuronal excitability in human fetal spinal cords (10-18 wk gestation; WG). Transverse spinal cord slices (300 μm thick) were prepared, and recordings were made, from visualized neurons in either the ventral (VH) or dorsal horn (DH) at 32°C. Action potentials (APs) could be elicited in VH neurons throughout the period examined, but only after 16 WG in DH neurons. At this age, VH neurons discharged multiple APs, whereas most DH neurons discharged single APs. In addition, at 16-18 WG, VH neurons also displayed larger AP and after-hyperpolarization amplitudes than DH neurons. Between 10 and 18 WG, the intrinsic properties of VH neurons changed markedly, with input resistance decreasing and AP and after-hyperpolarization amplitudes increasing. These findings are consistent with the hypothesis that VH motor circuitry matures more rapidly than the DH circuits that are involved in processing tactile and nociceptive information.
脊髓对于修改并向中枢神经系统的高级中枢传递感觉信息以及从中枢神经系统的高级中枢传递运动指令至关重要,从而启动并维持与情境相关的运动反应。我们对子宫内发育过程中脊髓感觉运动回路如何建立的理解主要基于对啮齿动物的研究。相比之下,关于人类感觉和运动系统发育的功能数据很少。在此,我们使用膜片钳电生理学来研究人类胎儿脊髓(妊娠10 - 18周;WG)中神经元兴奋性的发育。制备了300μm厚的脊髓横切片,并在32°C下从腹角(VH)或背角(DH)中可视化的神经元进行记录。在所研究的整个时期内,VH神经元均可诱发动作电位(AP),但DH神经元仅在妊娠16周后才能诱发。在这个年龄,VH神经元可发放多个动作电位,而大多数DH神经元仅发放单个动作电位。此外,在妊娠16 - 18周时,VH神经元的动作电位和超极化后电位幅度也比DH神经元大。在妊娠10至18周之间,VH神经元的内在特性发生了明显变化,输入电阻降低,动作电位和超极化后电位幅度增加。这些发现与以下假设一致,即VH运动回路比参与处理触觉和伤害性信息的DH回路成熟得更快。