Hodson Emma J, Nicholls Lynn G, Turner Philip J, Llyr Ronan, Fielding James W, Douglas Gillian, Ratnayaka Indrika, Robbins Peter A, Pugh Christopher W, Buckler Keith J, Ratcliffe Peter J, Bishop Tammie
Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK.
Department of Physiology, Anatomy and Genetics, Sherrington Building, South Parks Road, University of Oxford, Oxford, OX1 3PT, UK.
J Physiol. 2016 Mar 1;594(5):1179-95. doi: 10.1113/JP271050. Epub 2015 Oct 6.
Ventilatory sensitivity to hypoxia increases in response to continued hypoxic exposure as part of acute acclimatisation. Although this process is incompletely understood, insights have been gained through studies of the hypoxia-inducible factor (HIF) hydroxylase system. Genetic studies implicate these pathways widely in the integrated physiology of hypoxia, through effects on developmental or adaptive processes. In keeping with this, mice that are heterozygous for the principal HIF prolyl hydroxylase, PHD2, show enhanced ventilatory sensitivity to hypoxia and carotid body hyperplasia. Here we have sought to understand this process better through comparative analysis of inducible and constitutive inactivation of PHD2 and its principal targets HIF-1α and HIF-2α. We demonstrate that general inducible inactivation of PHD2 in tamoxifen-treated Phd2(f/f);Rosa26(+/CreERT2) mice, like constitutive, heterozygous PHD2 deficiency, enhances hypoxic ventilatory responses (HVRs: 7.2 ± 0.6 vs. 4.4 ± 0.4 ml min(-1) g(-1) in controls, P < 0.01). The ventilatory phenotypes associated with both inducible and constitutive inactivation of PHD2 were strongly compensated for by concomitant inactivation of HIF-2α, but not HIF-1α. Furthermore, inducible inactivation of HIF-2α strikingly impaired ventilatory acclimatisation to chronic hypoxia (HVRs: 4.1 ± 0.5 vs. 8.6 ± 0.5 ml min(-1) g(-1) in controls, P < 0.0001), as well as carotid body cell proliferation (400 ± 81 vs. 2630 ± 390 bromodeoxyuridine-positive cells mm(-2) in controls, P < 0.0001). The findings demonstrate the importance of the PHD2/HIF-2α enzyme-substrate couple in modulating ventilatory sensitivity to hypoxia.
作为急性适应过程的一部分,对持续低氧暴露的反应中,通气对低氧的敏感性会增加。尽管这个过程尚未完全了解,但通过对低氧诱导因子(HIF)羟化酶系统的研究已经获得了一些见解。遗传学研究表明,这些途径通过对发育或适应过程的影响,在低氧的综合生理学中广泛发挥作用。与此一致的是,主要HIF脯氨酰羟化酶PHD2的杂合子小鼠表现出对低氧的通气敏感性增强和颈动脉体增生。在这里,我们试图通过对PHD2及其主要靶点HIF-1α和HIF-2α的诱导性和组成性失活进行比较分析,来更好地理解这个过程。我们证明,在他莫昔芬处理的Phd2(f/f);Rosa26(+/CreERT2)小鼠中,PHD2的一般诱导性失活,与组成性杂合PHD2缺乏一样,增强了低氧通气反应(HVRs:对照组为4.4±0.4 ml min(-1) g(-1),处理组为7.2±0.6 ml min(-1) g(-1),P<0.01)。与PHD2的诱导性和组成性失活相关的通气表型,通过同时失活HIF-2α而得到强烈补偿,但HIF-1α失活则不能。此外,HIF-2α的诱导性失活显著损害了对慢性低氧的通气适应(HVRs:对照组为8.6±0.5 ml min(-1) g(-1),处理组为4.1±0.5 ml min(-1) g(-1),P<0.0001),以及颈动脉体细胞增殖(对照组为2630±390个溴脱氧尿苷阳性细胞/mm(-2),处理组为400±81个,P<0.0001)。这些发现证明了PHD2/HIF-2α酶-底物对在调节通气对低氧的敏感性方面的重要性。