Chudzicki M, Werner W S M, Shard A G, Wang Y-C, Castner D G, Powell C J
Technische Universität Wien, Institut für Angewandte Physik, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria.
National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Chemical Engineering and Bioengineering, University of Washington, Seattle, Washington 98195-1653, USA.
J Phys Chem C Nanomater Interfaces. 2015 Aug 6;119(31):17687-17696. doi: 10.1021/acs.jpcc.5b04517.
The functionality of a new version of the National Institute of Standards and Technology database Simulation of Electron Spectra for Surface Analysis (SESSA) has been extended by implementing a new geometry engine. The engine enables users to simulate Auger-electron spectra and X-ray photoelectron spectra for different predefined morphologies (planar, islands, spheres, multi-layer core-shell particles). We compared shell thicknesses of core-shell nanoparticles derived from core-shell XPS peak intensities using Shard's method, which allows one to estimate shell thicknesses of core-shell nanoparticles, and a series of SESSA simulations for a wide range of nanoparticle dimensions. We obtained very good agreement of the shell thicknesses for cases where elastic scattering within the shell can be neglected, a result that is in accordance with the underlying assumptions of the Shard model. If elastic-scattering effects are important, there can be thickness uncertainties of up to 25 %. Experimental spectra of functionalized gold nanoparticles obtained by Techane . were analyzed with SESSA 2.0 both with respect to the relevant peak intensities as well as the spectral shape. Good agreement between experiment and theory was found for both cases. These results show that the single-sphere model for core-shell nanoparticles is valid when just using peak intensities, but more detailed modeling is needed to describe the inelastic background.
通过实现一个新的几何引擎,美国国家标准与技术研究院表面分析电子能谱模拟数据库(SESSA)新版本的功能得到了扩展。该引擎使用户能够模拟不同预定义形态(平面、岛状、球形、多层核壳颗粒)的俄歇电子能谱和X射线光电子能谱。我们使用沙德方法(该方法可用于估算核壳纳米颗粒的壳层厚度),并针对一系列纳米颗粒尺寸进行了一系列SESSA模拟,比较了从核壳XPS峰强度得出的核壳纳米颗粒的壳层厚度。对于壳层内弹性散射可忽略不计的情况,我们得到了壳层厚度的良好一致性,这一结果与沙德模型的基本假设相符。如果弹性散射效应很重要,则壳层厚度的不确定性可能高达25%。对Techane公司获得的功能化金纳米颗粒的实验光谱,使用SESSA 2.0对相关峰强度以及光谱形状进行了分析。在这两种情况下,实验与理论都取得了良好的一致性。这些结果表明,仅使用峰强度时,核壳纳米颗粒的单球模型是有效的,但需要更详细的建模来描述非弹性背景。