Suppr超能文献

稳健的顶点分类。

Robust Vertex Classification.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2016 Mar;38(3):578-90. doi: 10.1109/TPAMI.2015.2456913. Epub 2015 Jul 15.

Abstract

For random graphs distributed according to stochastic blockmodels, a special case of latent position graphs, adjacency spectral embedding followed by appropriate vertex classification is asymptotically Bayes optimal; but this approach requires knowledge of and critically depends on the model dimension. In this paper, we propose a sparse representation vertex classifier which does not require information about the model dimension. This classifier represents a test vertex as a sparse combination of the vertices in the training set and uses the recovered coefficients to classify the test vertex. We prove consistency of our proposed classifier for stochastic blockmodels, and demonstrate that the sparse representation classifier can predict vertex labels with higher accuracy than adjacency spectral embedding approaches via both simulation studies and real data experiments. Our results demonstrate the robustness and effectiveness of our proposed vertex classifier when the model dimension is unknown.

摘要

对于随机图分布根据随机块模型,潜在位置图的特例,邻接谱嵌入后适当的顶点分类是渐近贝叶斯最优的;但这种方法需要了解和严重依赖于模型维度。在本文中,我们提出了一种不需要模型维度信息的稀疏表示顶点分类器。这个分类器将一个测试顶点表示为训练集顶点的稀疏组合,并使用恢复的系数来对测试顶点进行分类。我们证明了我们的分类器对于随机块模型的一致性,并通过模拟研究和真实数据实验表明,稀疏表示分类器可以比邻接谱嵌入方法更准确地预测顶点标签。我们的结果表明,当模型维度未知时,我们提出的顶点分类器具有鲁棒性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验