Clark John I
Departments of Biological Structure and Ophthalmology, University of Washington, Seattle, WA 98195-7420, USA.
Biochim Biophys Acta. 2016 Jan;1860(1 Pt B):240-5. doi: 10.1016/j.bbagen.2015.08.014. Epub 2015 Sep 2.
Human alphaB crystallin (HspB5) contains the alpha crystallin core domain, a series of antiparallel beta-strands organized into the characteristic beta sandwich of small heat shock proteins (sHsps). The full 3-dimensional structure for alpha crystallin has not been determined and the mechanism for the biological activity remains elusive because sHsps participate in multiple interactions with a broad range of target proteins that favor self-assembly of polydisperse fibrils and complexes. We selected human alphaB crystallin to study interactive sequences because it is involved in many human condensation, amyloid, and aggregation diseases and it is very sensitive to the destabilization of unfolding proteins. Sophisticated methods are being used to analyze and complete the structure of alphaB crystallin with the expectation of understanding sHsp function. This review considers the identification of interactive sites on the surface of the alphaB crystallin, which may be the key to understanding the multifunctional activity of human alphaB crystallin.
This review summarizes the research on the identification of the bioactive interactive sequences responsible for the function of human alphaB crystallin, an sHsp with chaperone-like activity.
The multifunctional activity of human alphaB crystallin results from the interactive peptide sequences exposed on the surface of the molecule. The multiple, non-covalent, interactive sequences can account for the selectivity and sensitivity of alphaB crystallin to the initiation of protein unfolding.
Human alphaB crystallin may be an important part of an endogenous protective mechanism in aging cells and tissues. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
人αB晶状体蛋白(HspB5)包含α晶状体蛋白核心结构域,这是一系列反平行β链,组成了小热休克蛋白(sHsps)特有的β折叠结构。α晶状体蛋白的完整三维结构尚未确定,其生物活性机制仍不清楚,因为sHsps与多种靶蛋白参与多种相互作用,这些靶蛋白有利于多分散原纤维和复合物的自组装。我们选择人αB晶状体蛋白来研究相互作用序列,因为它与许多人类凝聚、淀粉样变和聚集性疾病有关,并且对未折叠蛋白的不稳定非常敏感。目前正在使用复杂的方法来分析和完善αB晶状体蛋白的结构,以期了解sHsp的功能。本综述考虑了αB晶状体蛋白表面相互作用位点的鉴定,这可能是理解人αB晶状体蛋白多功能活性的关键。
本综述总结了对负责具有伴侣样活性的sHsp——人αB晶状体蛋白功能的生物活性相互作用序列鉴定的研究。
人αB晶状体蛋白的多功能活性源于分子表面暴露的相互作用肽序列。多个非共价相互作用序列可以解释αB晶状体蛋白对蛋白质解折叠起始的选择性和敏感性。
人αB晶状体蛋白可能是衰老细胞和组织中内源性保护机制的重要组成部分。本文是名为“健康与疾病中的晶状体蛋白生物化学”特刊的一部分。