Sinitskiy Anton V, Voth Gregory A
Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois 60637, USA.
J Chem Phys. 2015 Sep 7;143(9):094104. doi: 10.1063/1.4929790.
Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman's imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.
在过去几十年里,基于经典统计力学的凝聚相计算建模发展迅速,已产生了有关包含数百万原子的各种系统的重要信息。然而,如果感兴趣的系统包含重要的量子效应,就不能使用成熟的经典技术。处理处于平衡态的有限温度量子系统的一种方法是基于费曼的虚时路径积分方法以及随之而来的量子 - 经典同构。这种同构仅在代表每个物理量子粒子的经典准粒子数量无限多的极限情况下才是精确的。在这项工作中,我们基于新兴的粗粒化方法,对这个问题提出一种还原论观点。这种观点允许只用两个类经典准粒子及其共轭动量来表示一个量子粒子。这些耦合准粒子中的一个是量子路径积分准粒子分布的质心粒子。只有这个准粒子感受到势能函数。另一个准粒子直接提供量子力学算符的可观测量平均值。该理论为量子统计力学提供了一个简化的视角,揭示了它与经典统计物理最具还原论色彩的联系。通过这样做,它可以促进在复杂分子环境中对某些量子效应进行更简单的表示。