文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过可控活性聚合合成的聚合物纳米结构用于肿瘤靶向给药。

Polymer nanostructures synthesized by controlled living polymerization for tumor-targeted drug delivery.

作者信息

Wang Christine E, Stayton Patrick S, Pun Suzie H, Convertine Anthony J

机构信息

Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA.

Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA.

出版信息

J Control Release. 2015 Dec 10;219:345-354. doi: 10.1016/j.jconrel.2015.08.054. Epub 2015 Sep 2.


DOI:10.1016/j.jconrel.2015.08.054
PMID:26342661
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4656053/
Abstract

The development of drug delivery systems based on well-defined polymer nanostructures could lead to significant improvements in the treatment of cancer. The design of these therapeutic nanosystems must account for numerous systemic and circulation obstacles as well as the specific pathophysiology of the tumor. Nanoparticle size and surface charge must also be carefully selected in order to maintain long circulation times, allow tumor penetration, and avoid clearance by the reticuloendothelial system (RES). Targeting ligands such as vitamins, peptides, and antibodies can improve the accumulation of nanoparticle-based therapies in tumor tissue but must be optimized to allow for intratumoral penetration. In this review, we will highlight factors influencing the design of nanoparticle therapies as well as the development of modern controlled "living" polymerization techniques (e.g. ATRP, RAFT, ROMP) that are leading to the creation of sophisticated new polymer architectures with discrete spatially-defined functional modules. These innovative materials (e.g. star polymers, polymer brushes, macrocyclic polymers, and hyperbranched polymers) combine many of the desirable properties of traditional nanoparticle therapies while substantially reducing or eliminating the need for complex formulations.

摘要

基于明确的聚合物纳米结构开发药物递送系统有望显著改善癌症治疗效果。这些治疗性纳米系统的设计必须考虑到众多的全身和循环障碍以及肿瘤的特定病理生理学。还必须仔细选择纳米颗粒的大小和表面电荷,以保持较长的循环时间、实现肿瘤渗透并避免被网状内皮系统(RES)清除。诸如维生素、肽和抗体等靶向配体可以提高基于纳米颗粒的疗法在肿瘤组织中的积累,但必须进行优化以实现肿瘤内渗透。在本综述中,我们将重点介绍影响纳米颗粒疗法设计的因素,以及现代可控“活性”聚合技术(如原子转移自由基聚合(ATRP)、可逆加成-断裂链转移聚合(RAFT)、开环易位聚合(ROMP))的发展,这些技术正在促使具有离散的空间定义功能模块的复杂新型聚合物结构的产生。这些创新材料(如星形聚合物、聚合物刷、大环聚合物和超支化聚合物)结合了传统纳米颗粒疗法的许多理想特性,同时大幅减少或消除了对复杂制剂的需求。

相似文献

[1]
Polymer nanostructures synthesized by controlled living polymerization for tumor-targeted drug delivery.

J Control Release. 2015-12-10

[2]
Recent Advances in Amphiphilic Polymer-Oligonucleotide Nanomaterials via Living/Controlled Polymerization Technologies.

Bioconjug Chem. 2019-4-19

[3]
Andrographolide-loaded polymerized phenylboronic acid nanoconstruct for stimuli-responsive chemotherapy.

J Control Release. 2016-10-28

[4]
Combinatorial-designed multifunctional polymeric nanosystems for tumor-targeted therapeutic delivery.

Acc Chem Res. 2011-7-15

[5]
Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels.

J Control Release. 2009-9-15

[6]
Polymer-based cancer nanotheranostics: retrospectives of multi-functionalities and pharmacokinetics.

Curr Drug Metab. 2013-7

[7]
Tumor Targeting of Polymeric Nanoparticles Conjugated with Peptides, Saccharides, and Small Molecules for Anticancer Drugs.

Curr Pharm Des. 2017

[8]
Nanoparticle and targeted systems for cancer therapy.

Adv Drug Deliv Rev. 2004-9-22

[9]
Recent Clinical Developments of Nanomediated Drug Delivery Systems of Taxanes for the Treatment of Cancer.

Int J Nanomedicine. 2020-10-22

[10]
DNA nanostructure-based drug delivery nanosystems in cancer therapy.

Int J Pharm. 2017-9-18

引用本文的文献

[1]
Recent Advancement in Drug Targeting Therapies in the Treatment of Pancreatic Cancer.

Curr Pharm Des. 2025

[2]
Nanotechnology for the Diagnosis and Treatment of Liver Cancer.

Int J Nanomedicine. 2024-12-24

[3]
The role of multi-walled carbon nanotubes in enhancing the hydrolysis and thermal stability of PLA.

Sci Rep. 2024-4-10

[4]
Advances and Prospects in the Treatment of Pancreatic Cancer.

Int J Nanomedicine. 2023

[5]
Recent Advances in Antioxidant Polymers: From Sustainable and Natural Monomers to Synthesis and Applications.

Polymers (Basel). 2021-7-27

[6]
Synthesis of Nanogels: Current Trends and Future Outlook.

Gels. 2021-3-29

[7]
Nanoparticles exhibit greater accumulation in kidney glomeruli during experimental glomerular kidney disease.

Physiol Rep. 2020-8

[8]
Polymer nanomedicines.

Adv Drug Deliv Rev. 2020

[9]
A Nanostrategy for Efficient Imaging-Guided Antitumor Therapy through a Stimuli-Responsive Branched Polymeric Prodrug.

Adv Sci (Weinh). 2020-1-31

[10]
Drug-interactive mPEG--PLA-Phe(Boc) micelles enhance the tolerance and anti-tumor efficacy of docetaxel.

Drug Deliv. 2020-12

本文引用的文献

[1]
Cyclic Brush Polymers by Combining Ring-Expansion Metathesis Polymerization and the "Grafting from" Technique.

ACS Macro Lett. 2012-5-15

[2]
ATRP Synthesis of Sunflower Polymers using Cyclic Multimacroinitiators.

ACS Macro Lett. 2015-9-15

[3]
Recent advances in targeted drug delivery approaches using dendritic polymers.

Biomater Sci. 2015-7

[4]
Well-defined single polymer nanoparticles for the antibody-targeted delivery of chemotherapeutic agents.

Polym Chem. 2015-2-28

[5]
Dynamic intracellular delivery of antibiotics via pH-responsive polymersomes.

Polym Chem. 2015-2-28

[6]
Body temperature sensitive micelles for MRI enhancement.

Chem Commun (Camb). 2015-6-4

[7]
A synthetic fibrin cross-linking polymer for modulating clot properties and inducing hemostasis.

Sci Transl Med. 2015-3-4

[8]
Size and rigidity of cylindrical polymer brushes dictate long circulating properties in vivo.

ACS Nano. 2015-1-29

[9]
Enhancement of MHC-I antigen presentation via architectural control of pH-responsive, endosomolytic polymer nanoparticles.

AAPS J. 2015-3

[10]
Improving chemoradiotherapy with nanoparticle therapeutics.

Transl Cancer Res. 2013-8-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索