Wang Christine E, Stayton Patrick S, Pun Suzie H, Convertine Anthony J
Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA.
Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA.
J Control Release. 2015 Dec 10;219:345-354. doi: 10.1016/j.jconrel.2015.08.054. Epub 2015 Sep 2.
The development of drug delivery systems based on well-defined polymer nanostructures could lead to significant improvements in the treatment of cancer. The design of these therapeutic nanosystems must account for numerous systemic and circulation obstacles as well as the specific pathophysiology of the tumor. Nanoparticle size and surface charge must also be carefully selected in order to maintain long circulation times, allow tumor penetration, and avoid clearance by the reticuloendothelial system (RES). Targeting ligands such as vitamins, peptides, and antibodies can improve the accumulation of nanoparticle-based therapies in tumor tissue but must be optimized to allow for intratumoral penetration. In this review, we will highlight factors influencing the design of nanoparticle therapies as well as the development of modern controlled "living" polymerization techniques (e.g. ATRP, RAFT, ROMP) that are leading to the creation of sophisticated new polymer architectures with discrete spatially-defined functional modules. These innovative materials (e.g. star polymers, polymer brushes, macrocyclic polymers, and hyperbranched polymers) combine many of the desirable properties of traditional nanoparticle therapies while substantially reducing or eliminating the need for complex formulations.
基于明确的聚合物纳米结构开发药物递送系统有望显著改善癌症治疗效果。这些治疗性纳米系统的设计必须考虑到众多的全身和循环障碍以及肿瘤的特定病理生理学。还必须仔细选择纳米颗粒的大小和表面电荷,以保持较长的循环时间、实现肿瘤渗透并避免被网状内皮系统(RES)清除。诸如维生素、肽和抗体等靶向配体可以提高基于纳米颗粒的疗法在肿瘤组织中的积累,但必须进行优化以实现肿瘤内渗透。在本综述中,我们将重点介绍影响纳米颗粒疗法设计的因素,以及现代可控“活性”聚合技术(如原子转移自由基聚合(ATRP)、可逆加成-断裂链转移聚合(RAFT)、开环易位聚合(ROMP))的发展,这些技术正在促使具有离散的空间定义功能模块的复杂新型聚合物结构的产生。这些创新材料(如星形聚合物、聚合物刷、大环聚合物和超支化聚合物)结合了传统纳米颗粒疗法的许多理想特性,同时大幅减少或消除了对复杂制剂的需求。
J Control Release. 2015-12-10
J Control Release. 2016-10-28
Adv Drug Deliv Rev. 2004-9-22
Int J Nanomedicine. 2020-10-22
Int J Pharm. 2017-9-18
Int J Nanomedicine. 2024-12-24
Int J Nanomedicine. 2023
Gels. 2021-3-29
Adv Drug Deliv Rev. 2020
ACS Macro Lett. 2015-9-15
Biomater Sci. 2015-7
Polym Chem. 2015-2-28
Chem Commun (Camb). 2015-6-4
Sci Transl Med. 2015-3-4
Transl Cancer Res. 2013-8-1