Department of Food Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan, ROC.
Department of Food Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan, ROC.
Carbohydr Polym. 2015 Nov 20;133:313-9. doi: 10.1016/j.carbpol.2015.06.092. Epub 2015 Jul 9.
This study aimed to establish the sequential static and static-dynamic supercritical carbon dioxide (SDCO2) fractionation conditions to obtain a higher yield and desired chitosan with lower polydispersity index (PDI) and higher degree of deacetylation (DD). The yield increased with increasing DD of used chitosan and amount of cosolvent. The yield of acetic acid cosolvent was higher than those of malic and citric acid cosolvents. SDCO2, compared to static supercritical carbon dioxide, has higher yield. The yield of extracted chitosan was 5.82-14.70% by SDCO2/acetic acid, which increases with increasing pressure. The DD of fractionated chitosan increased from 66.1% to 70.81-85.33%, while the PDI decreased from 3.97 to 1.69-3.16. The molecular weight changed from 622kDa to 412-649kDa, which increased as density of supercritical carbon dioxide increases. Hence, higher DD and lower PDI extracted chitosan can be obtained through controlling the temperature and pressure of SDCO2.
本研究旨在建立顺序静态和静态-动态超临界二氧化碳(SDCO2)分级条件,以获得更高的产率和所需的具有较低多分散指数(PDI)和更高脱乙酰度(DD)的壳聚糖。产率随着使用的壳聚糖的 DD 和共溶剂的量的增加而增加。与马来酸和柠檬酸共溶剂相比,乙酸的产率更高。与静态超临界二氧化碳相比,SDCO2 的产率更高。通过 SDCO2/乙酸提取的壳聚糖的产率为 5.82-14.70%,产率随压力的增加而增加。分级壳聚糖的 DD 从 66.1%增加到 70.81-85.33%,而 PDI 从 3.97 降低到 1.69-3.16。分子量从 622kDa 变为 412-649kDa,随着超临界二氧化碳密度的增加而增加。因此,通过控制 SDCO2 的温度和压力,可以获得具有更高 DD 和更低 PDI 的壳聚糖。