Suppr超能文献

利用红外光谱法对丝绸进行鉴定和分类。

Identification and classification of silks using infrared spectroscopy.

作者信息

Boulet-Audet Maxime, Vollrath Fritz, Holland Chris

机构信息

Department of Life Sciences, Imperial College London, London SW7 2AZ, UK Department of Zoology, University of Oxford, Oxford OX1 3PS, UK

Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.

出版信息

J Exp Biol. 2015 Oct;218(Pt 19):3138-49. doi: 10.1242/jeb.128306. Epub 2015 Sep 7.

Abstract

Lepidopteran silks number in the thousands and display a vast diversity of structures, properties and industrial potential. To map this remarkable biochemical diversity, we present an identification and screening method based on the infrared spectra of native silk feedstock and cocoons. Multivariate analysis of over 1214 infrared spectra obtained from 35 species allowed us to group silks into distinct hierarchies and a classification that agrees well with current phylogenetic data and taxonomies. This approach also provides information on the relative content of sericin, calcium oxalate, phenolic compounds, poly-alanine and poly(alanine-glycine) β-sheets. It emerged that the domesticated mulberry silkmoth Bombyx mori represents an outlier compared with other silkmoth taxa in terms of spectral properties. Interestingly, Epiphora bauhiniae was found to contain the highest amount of β-sheets reported to date for any wild silkmoth. We conclude that our approach provides a new route to determine cocoon chemical composition and in turn a novel, biological as well as material, classification of silks.

摘要

鳞翅目昆虫的丝有数千种,展现出结构、特性和工业潜力的巨大多样性。为了描绘这种显著的生化多样性,我们提出了一种基于天然丝原料和蚕茧红外光谱的鉴定和筛选方法。对从35个物种获得的1214多个红外光谱进行多变量分析,使我们能够将丝分组为不同的层次结构和分类,这与当前的系统发育数据和分类法非常吻合。这种方法还提供了有关丝胶蛋白、草酸钙、酚类化合物、聚丙氨酸和聚(丙氨酸-甘氨酸)β-折叠相对含量的信息。结果发现,就光谱特性而言,家养桑蚕与其他蚕类分类群相比是一个异类。有趣的是,发现紫斑谷蛾所含的β-折叠量是迄今为止报道的所有野生蚕蛾中最高的。我们得出结论,我们的方法为确定蚕茧化学成分提供了一条新途径,进而为丝提供了一种新的、生物学以及材料学的分类方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23db/4631776/a3d265d79c39/jexbio-218-128306-g1.jpg

相似文献

1
Identification and classification of silks using infrared spectroscopy.
J Exp Biol. 2015 Oct;218(Pt 19):3138-49. doi: 10.1242/jeb.128306. Epub 2015 Sep 7.
3
Sericin Composition in the Silk of Antheraea yamamai.
Biomacromolecules. 2016 May 9;17(5):1776-87. doi: 10.1021/acs.biomac.6b00189. Epub 2016 Apr 19.
4
Demineralization enables reeling of wild silkmoth cocoons.
Biomacromolecules. 2011 Jun 13;12(6):2257-66. doi: 10.1021/bm2003362. Epub 2011 May 25.
8
Interactions between fibroin and sericin proteins from Antheraea pernyi and Bombyx mori silk fibers.
J Colloid Interface Sci. 2016 Sep 15;478:316-23. doi: 10.1016/j.jcis.2016.06.030. Epub 2016 Jun 10.
9
Comparing the microstructure and mechanical properties of Bombyx mori and Antheraea pernyi cocoon composites.
Acta Biomater. 2017 Jan 1;47:60-70. doi: 10.1016/j.actbio.2016.09.042. Epub 2016 Sep 30.
10
Characterization and comparative analysis of sericin protein 150 in Bombyx mori.
Sci Rep. 2024 Sep 9;14(1):20990. doi: 10.1038/s41598-024-71503-2.

引用本文的文献

2
Biosynthesis of a dual growth factors (GFs) functionalized silk sericin hydrogel to promote chronic wound healing in diabetic mice.
Bioact Mater. 2025 Jun 18;52:511-528. doi: 10.1016/j.bioactmat.2025.06.017. eCollection 2025 Oct.
5
Synthesis, characterization and application of silk sericin-based silver nanocomposites for antibacterial and food coating solutions.
RSC Adv. 2024 Oct 21;14(45):33068-33079. doi: 10.1039/d4ra07056a. eCollection 2024 Oct 17.
6
The role of water mobility on water-responsive actuation of silk.
Nat Commun. 2024 Sep 27;15(1):8287. doi: 10.1038/s41467-024-52715-6.
7
Polymeric scaffold integrated with nanovesicle-entrapped curcuminoids for enhanced therapeutic efficacy.
Nanomedicine (Lond). 2024;19(14):1313-1329. doi: 10.1080/17435889.2024.2347823. Epub 2024 Jun 17.
8
Structural conversion of the spidroin C-terminal domain during assembly of spider silk fibers.
Nat Commun. 2024 May 31;15(1):4670. doi: 10.1038/s41467-024-49111-5.
9
A recombinant chimeric spider pyriform-aciniform silk with highly tunable mechanical performance.
Mater Today Bio. 2024 Apr 27;26:101073. doi: 10.1016/j.mtbio.2024.101073. eCollection 2024 Jun.
10
Preparation of Natural Plant Polyphenol Catechin Film for Structural Coloration of Silk Fabrics.
Biomimetics (Basel). 2024 Jan 1;9(1):15. doi: 10.3390/biomimetics9010015.

本文引用的文献

2
Coatings and films made of silk proteins.
ACS Appl Mater Interfaces. 2014 Sep 24;6(18):15611-25. doi: 10.1021/am5008479. Epub 2014 Jul 16.
3
Silk protein aggregation kinetics revealed by Rheo-IR.
Acta Biomater. 2014 Feb;10(2):776-84. doi: 10.1016/j.actbio.2013.10.032. Epub 2013 Nov 5.
4
The silkmoth cocoon as humidity trap and waterproof barrier.
Comp Biochem Physiol A Mol Integr Physiol. 2013 Apr;164(4):645-52. doi: 10.1016/j.cbpa.2013.01.023. Epub 2013 Feb 4.
5
Fungi, bacteria and soil pH: the oxalate-carbonate pathway as a model for metabolic interaction.
Environ Microbiol. 2012 Nov;14(11):2960-70. doi: 10.1111/j.1462-2920.2012.02862.x. Epub 2012 Aug 29.
6
Carbondioxide gating in silk cocoon.
Biointerphases. 2012 Dec;7(1-4):45. doi: 10.1007/s13758-012-0045-7. Epub 2012 Jul 12.
7
Structure and physical properties of silkworm cocoons.
J R Soc Interface. 2012 Sep 7;9(74):2299-308. doi: 10.1098/rsif.2011.0887. Epub 2012 May 2.
8
Silk cocoon (Bombyx mori): multi-layer structure and mechanical properties.
Acta Biomater. 2012 Jul;8(7):2620-7. doi: 10.1016/j.actbio.2012.03.043. Epub 2012 Apr 4.
9
Demineralization enables reeling of wild silkmoth cocoons.
Biomacromolecules. 2011 Jun 13;12(6):2257-66. doi: 10.1021/bm2003362. Epub 2011 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验