Suppr超能文献

一种具有高度可调机械性能的重组嵌合蜘蛛梨状-葡萄状丝。

A recombinant chimeric spider pyriform-aciniform silk with highly tunable mechanical performance.

作者信息

Ghimire Anupama, Xu Lingling, Liu Xiang-Qin, Rainey Jan K

机构信息

Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.

Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada.

出版信息

Mater Today Bio. 2024 Apr 27;26:101073. doi: 10.1016/j.mtbio.2024.101073. eCollection 2024 Jun.

Abstract

Spider silks are natural protein-based biomaterials which are renowned for their mechanical properties and hold great promise for applications ranging from high-performance textiles to regenerative medicine. While some spiders can produce several different types of silks, most spider silk types - including pyriform and aciniform silks - are relatively unstudied. Pyriform and aciniform silks have distinct mechanical behavior and physicochemical properties, with materials produced using combinations of these silks currently unexplored. Here, we introduce an engineered chimeric fusion protein consisting of two repeat units of pyriform (Py) silk followed by two repeat units of aciniform (W) silk named PyW. This recombinant ∼86.5 kDa protein is amenable to expression and purification from and exhibits high α-helicity in a fluorinated acid- and alcohol-based solution used to form a dope for wet-spinning. Wet-spinning enables continuous fiber production and post-spin stretching of the wet-spun fibers in air or following submersion in water or ethanol leads to increases in optical anisotropy, consistent with increased molecular alignment along the fiber axis. Mechanical properties of the fibers vary as a function of post-spin stretching condition, with the highest extensibility and strength observed in air-stretched and ethanol-treated fibers, respectively, with mechanics being superior to fibers spun from either constituent protein alone. Notably, the maximum extensibility obtained (∼157 ± 38 %) is of the same magnitude reported for natural flagelliform silks, the class of spider silk most associated with being stretchable. Interestingly, PyW is also water-compatible, unlike its constituent Py. Fiber-state secondary structure correlates well with the observed mechanical properties, with depleted α-helicity and increased β-sheet content in cases of increased strength. PyW fibers thus provide enhanced materials behavior in terms of their mechanics, tunability, and fiber properties, providing new directions for design and development of biomaterials suitable and tunable for disparate applications.

摘要

蜘蛛丝是基于天然蛋白质的生物材料,以其机械性能而闻名,在从高性能纺织品到再生医学等广泛应用领域具有巨大潜力。虽然一些蜘蛛能产生几种不同类型的丝,但大多数蜘蛛丝类型——包括梨状丝和aciniform丝——相对研究较少。梨状丝和aciniform丝具有独特的力学行为和物理化学性质,目前尚未探索使用这些丝的组合生产的材料。在这里,我们介绍一种工程化的嵌合融合蛋白,它由两个梨状(Py)丝重复单元和两个aciniform(W)丝重复单元组成,名为PyW。这种重组的约86.5 kDa蛋白易于从[具体来源未给出]中表达和纯化,并且在用于形成湿法纺丝原液的氟化酸和醇基溶液中表现出高α-螺旋度。湿法纺丝能够连续生产纤维,湿纺纤维在空气中或浸入水或乙醇后进行纺后拉伸会导致光学各向异性增加,这与沿纤维轴分子排列增加一致。纤维的机械性能随纺后拉伸条件而变化,在空气拉伸和乙醇处理的纤维中分别观察到最高的伸长率和强度,其力学性能优于单独由任何一种组成蛋白纺制的纤维。值得注意的是,获得的最大伸长率(约157±38%)与报道的天然鞭状丝的伸长率相当,鞭状丝是与可拉伸性最相关的蜘蛛丝类别。有趣的是,与组成它的Py不同,PyW也是与水相容的。纤维态二级结构与观察到的机械性能密切相关,在强度增加的情况下α-螺旋度降低和β-折叠含量增加。因此,PyW纤维在力学、可调性和纤维性能方面提供了增强的材料性能,为设计和开发适用于不同应用且可调的生物材料提供了新方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/916f/11070712/39ee4d77317a/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验