Suppr超能文献

连接脯氨酸代谢与植物衰老中的信号通路。

Connecting proline metabolism and signaling pathways in plant senescence.

作者信息

Zhang Lu, Becker Donald F

机构信息

Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln , Lincoln, NE, USA.

出版信息

Front Plant Sci. 2015 Jul 22;6:552. doi: 10.3389/fpls.2015.00552. eCollection 2015.

Abstract

The amino acid proline has a unique biological role in stress adaptation. Proline metabolism is manipulated under stress by multiple and complex regulatory pathways and can profoundly influence cell death and survival in microorganisms, plants, and animals. Though the effects of proline are mediated by diverse signaling pathways, a common theme appears to be the generation of reactive oxygen species (ROS) due to proline oxidation being coupled to the respiratory electron transport chain. Considerable research has been devoted to understand how plants exploit proline metabolism in response to abiotic and biotic stress. Here, we review potential mechanisms by which proline metabolism influences plant senescence, namely in the petal and leaf. Recent studies of petal senescence suggest proline content is manipulated to meet energy demands of senescing cells. In the flower and leaf, proline metabolism may influence ROS signaling pathways that delay senescence progression. Future studies focusing on the mechanisms by which proline metabolic shifts occur during senescence may lead to novel methods to rescue crops under stress and to preserve post-harvest agricultural products.

摘要

氨基酸脯氨酸在应激适应中具有独特的生物学作用。脯氨酸代谢在应激状态下受多种复杂调控途径的影响,并且能深刻影响微生物、植物和动物细胞的死亡与存活。尽管脯氨酸的作用是由多种信号通路介导的,但一个共同的主题似乎是由于脯氨酸氧化与呼吸电子传递链偶联而产生活性氧(ROS)。大量研究致力于了解植物如何利用脯氨酸代谢来应对非生物和生物胁迫。在此,我们综述脯氨酸代谢影响植物衰老的潜在机制,特别是在花瓣和叶片中的机制。最近关于花瓣衰老的研究表明,脯氨酸含量被调控以满足衰老细胞的能量需求。在花和叶中,脯氨酸代谢可能影响延缓衰老进程的ROS信号通路。未来聚焦于衰老过程中脯氨酸代谢转变机制的研究,可能会带来在胁迫下拯救作物以及保存收获后农产品的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f97b/4544304/60bccf518be0/fpls-06-00552-g0001.jpg

相似文献

1
Connecting proline metabolism and signaling pathways in plant senescence.
Front Plant Sci. 2015 Jul 22;6:552. doi: 10.3389/fpls.2015.00552. eCollection 2015.
2
Proline mechanisms of stress survival.
Antioxid Redox Signal. 2013 Sep 20;19(9):998-1011. doi: 10.1089/ars.2012.5074. Epub 2013 May 23.
3
Isolation and expression analysis of proline metabolism-related genes in Chrysanthemum lavandulifolium.
Gene. 2014 Mar 10;537(2):203-13. doi: 10.1016/j.gene.2014.01.002. Epub 2014 Jan 13.
5
Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens.
Front Plant Sci. 2015 Jul 6;6:503. doi: 10.3389/fpls.2015.00503. eCollection 2015.
8
Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes.
J Biol Chem. 2009 Sep 25;284(39):26482-92. doi: 10.1074/jbc.M109.009340. Epub 2009 Jul 27.
9

引用本文的文献

1
The Senescence of Cut Daffodil Flowers Correlates with Programmed Cell Death Symptoms.
Int J Mol Sci. 2025 Aug 7;26(15):7657. doi: 10.3390/ijms26157657.
2
Metagenomic and Metabolomic Perspectives on the Drought Tolerance of Broomcorn Millet ( L.).
Microorganisms. 2025 Jul 6;13(7):1593. doi: 10.3390/microorganisms13071593.
3
Proline Tagging for Stress Tolerance in Plants.
Int J Genomics. 2025 Apr 2;2025:9348557. doi: 10.1155/ijog/9348557. eCollection 2025.
4
Oil Yield and Bioactive Compounds of Trees Grown Under Saline Conditions.
Plants (Basel). 2025 Feb 7;14(4):509. doi: 10.3390/plants14040509.
5
Proline-Selective Electrochemiluminescence Detecting a Single Amino Acid Variation Between A1 and A2 β-Casein Containing Milks.
Adv Sci (Weinh). 2025 Feb;12(5):e2411956. doi: 10.1002/advs.202411956. Epub 2024 Dec 7.
6
Natural variation in the chickpea metabolome under drought stress.
Plant Biotechnol J. 2024 Dec;22(12):3278-3294. doi: 10.1111/pbi.14447. Epub 2024 Oct 16.
8
Proline Metabolism Genes in Transgenic Plants: Meta-Analysis under Drought and Salt Stress.
Plants (Basel). 2024 Jul 11;13(14):1913. doi: 10.3390/plants13141913.
9
The primary carbon metabolism in cyanobacteria and its regulation.
Front Plant Sci. 2024 Jul 5;15:1417680. doi: 10.3389/fpls.2024.1417680. eCollection 2024.

本文引用的文献

1
Gene expression during leaf senescence.
New Phytol. 1994 Mar;126(3):419-448. doi: 10.1111/j.1469-8137.1994.tb04243.x.
2
A novel autoregulatory loop between the Gcn2-Atf4 pathway and (L)-Proline [corrected] metabolism controls stem cell identity.
Cell Death Differ. 2015 Jul;22(7):1094-105. doi: 10.1038/cdd.2015.24. Epub 2015 Apr 10.
3
Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana.
Front Plant Sci. 2015 Jan 12;5:772. doi: 10.3389/fpls.2014.00772. eCollection 2014.
5
Proline metabolism increases katG expression and oxidative stress resistance in Escherichia coli.
J Bacteriol. 2015 Feb;197(3):431-40. doi: 10.1128/JB.02282-14. Epub 2014 Nov 10.
6
Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation.
Biol Rev Camb Philos Soc. 2015 Nov;90(4):1065-99. doi: 10.1111/brv.12146. Epub 2014 Nov 4.
8
Proline biosynthesis is required for endoplasmic reticulum stress tolerance in Saccharomyces cerevisiae.
J Biol Chem. 2014 Oct 3;289(40):27794-806. doi: 10.1074/jbc.M114.562827. Epub 2014 Aug 11.
9
The low energy signaling network.
Front Plant Sci. 2014 Jul 17;5:353. doi: 10.3389/fpls.2014.00353. eCollection 2014.
10
bZIPs and WRKYs: two large transcription factor families executing two different functional strategies.
Front Plant Sci. 2014 Apr 30;5:169. doi: 10.3389/fpls.2014.00169. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验