Suppr超能文献

干旱胁迫下鹰嘴豆代谢组的自然变异。

Natural variation in the chickpea metabolome under drought stress.

机构信息

Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.

Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Spain.

出版信息

Plant Biotechnol J. 2024 Dec;22(12):3278-3294. doi: 10.1111/pbi.14447. Epub 2024 Oct 16.

Abstract

Chickpea is the world's fourth largest grown legume crop, which significantly contributes to food security by providing calories and dietary protein globally. However, the increased frequency of drought stress has significantly reduced chickpea production in recent years. Here, we have performed a field experiment with 36 diverse chickpea genotypes to evaluate grain yield, photosynthetic activities and molecular traits related to drought stress. For metabolomics analysis, leaf tissue was collected at three time points representing different pod-filling stages. We identified L-threonic acid, fructose and sugar alcohols involved in chickpea adaptive drought response within the mid-pod-filling stage. A stress susceptibility index for each genotype was calculated to identify tolerance capacity under drought, distributing the 36 genotypes into four categories from best to worst performance. To understand how biochemical mechanisms control different traits for genetic improvement, we performed a differential Jacobian analysis, which unveiled the interplay between various metabolic pathways across three time points, including higher flux towards inositol interconversions, glycolysis for high-performing genotypes, fumarate to malate conversion, and carbon and nitrogen metabolism perturbations. Metabolic GWAS (mGWAS) analysis uncovered gene candidates involved in glycolysis and MEP pathway corroborating with the differential biochemical Jacobian results. Accordingly, this proposed data analysis strategy bridges the gap from pure statistical association to causal biochemical relations by exploiting natural variation. Our study offers new perspectives on the genetic and metabolic understanding of drought tolerance-associated diversity in the chickpea metabolome and led to the identification of metabolic control points that can be also tested in other legume crops.

摘要

鹰嘴豆是世界第四大种植豆类作物,它通过在全球范围内提供热量和膳食蛋白质,为粮食安全做出了重大贡献。然而,近年来干旱胁迫的频繁发生,导致鹰嘴豆的产量显著下降。在这里,我们对 36 个不同的鹰嘴豆基因型进行了田间试验,以评估籽粒产量、光合作用和与干旱胁迫相关的分子特性。对于代谢组学分析,在三个不同的荚果填充阶段收集了叶片组织。我们鉴定了 L-苏糖醇、果糖和糖醇,它们参与了鹰嘴豆适应干旱胁迫的反应。为每个基因型计算了一个胁迫敏感性指数,以确定在干旱条件下的耐受能力,将 36 个基因型分为从最佳到最差表现的四个类别。为了了解生化机制如何控制不同的性状以进行遗传改良,我们进行了差异雅可比分析,该分析揭示了三个时间点之间各种代谢途径之间的相互作用,包括肌醇转化途径的通量增加、高表现基因型的糖酵解途径、富马酸向苹果酸的转化,以及碳氮代谢的扰动。代谢 GWAS(mGWAS)分析揭示了参与糖酵解和 MEP 途径的基因候选者,这与差异生化雅可比分析结果一致。因此,这种拟议的数据分析策略通过利用自然变异,从纯统计关联到因果生化关系架起了桥梁。我们的研究为鹰嘴豆代谢组中耐旱相关多样性的遗传和代谢理解提供了新的视角,并确定了可以在其他豆科作物中进行测试的代谢控制关键点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d062/11606430/3f278d9edf29/PBI-22-3278-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验