Faoro R, Pelle B, Zuliani A, Cheinet P, Arimondo E, Pillet P
Laboratoire Aimé Cotton, CNRS, Univ. Paris-Sud, ENS Cachan, Bât. 505, 91405 Orsay, France.
Physics Department, Universita di Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy.
Nat Commun. 2015 Sep 8;6:8173. doi: 10.1038/ncomms9173.
Controlling the interactions between ultracold atoms is crucial for quantum simulation and computation purposes. Highly excited Rydberg atoms are considered in this prospect for their strong and controllable interactions known in the dipole-dipole case to induce non-radiative energy transfers between atom pairs, similarly to fluorescence resonance energy transfer (FRET) in biological systems. Here we predict few-body FRET processes in Rydberg atoms and observe the first three-body resonance energy transfer in cold Rydberg atoms using cold caesium atoms. In these resonances, additional relay atoms carry away an energy excess preventing the two-body resonance, leading thus to a Borromean type of energy transfer. These few-body processes present strong similarities with multistep FRET between chromophores sometimes called donor-bridge-acceptor or superexchange. Most importantly, they generalize to any Rydberg atom and could lead to new implementations of few-body quantum gates or entanglement.
控制超冷原子之间的相互作用对于量子模拟和计算至关重要。在这一前景中,高激发里德堡原子因其在偶极-偶极情况下已知的强且可控的相互作用而被考虑,这种相互作用会在原子对之间诱导非辐射能量转移,类似于生物系统中的荧光共振能量转移(FRET)。在此,我们预测了里德堡原子中的少体FRET过程,并使用冷铯原子在冷里德堡原子中观测到了首个三体共振能量转移。在这些共振中,额外的中继原子带走多余能量,从而防止两体共振,进而导致一种博罗梅安型的能量转移。这些少体过程与发色团之间有时被称为供体-桥-受体或超交换的多步FRET有很强的相似性。最重要的是,它们可推广到任何里德堡原子,并可能导致少体量子门或纠缠的新实现方式。