Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.
Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany.
J Phys Chem A. 2023 May 11;127(18):3925-3939. doi: 10.1021/acs.jpca.2c08454. Epub 2023 Mar 28.
Controlling molecular binding at the level of single atoms is one of the holy grails of quantum chemistry. Rydberg macrodimers─bound states between highly excited Rydberg atoms─provide a novel perspective in this direction. Resulting from binding potentials formed by the strong, long-range interactions of Rydberg states, Rydberg macrodimers feature bond lengths in the micrometer regime, exceeding those of conventional molecules by orders of magnitude. Using single-atom control in quantum gas microscopes, the unique properties of these exotic states can be studied with unprecedented control, including the response to magnetic fields or the polarization of light in their photoassociation. The high accuracy achieved in spectroscopic studies of macrodimers makes them an ideal testbed to benchmark Rydberg interactions, with direct relevance to quantum computing and information protocols where these are employed. This review provides a historic overview and summarizes the recent findings in the field of Rydberg macrodimers. Furthermore, it presents new data on interactions between macrodimers, leading to a phenomenon analogous to Rydberg blockade at the level of molecules, opening the path toward studying many-body systems of ultralong-range Rydberg molecules.
控制单原子水平的分子结合是量子化学的圣杯之一。里德伯大分子——高度激发的里德伯原子之间的束缚态——为此提供了一个新的视角。由于里德伯态的强、远程相互作用形成的结合势,里德伯大分子的键长在微米范围内,比传统分子大几个数量级。在量子气体显微镜中使用单原子控制,可以以前所未有的控制精度研究这些奇异态的特性,包括对磁场的响应或光在其光缔合中的偏振。在大分子的光谱研究中实现的高精度使它们成为基准里德伯相互作用的理想测试平台,与量子计算和信息协议直接相关,这些协议中都使用了里德伯相互作用。这篇综述提供了里德伯大分子领域的历史概述,并总结了最近的发现。此外,它还介绍了大分子之间相互作用的新数据,导致分子水平上类似于里德伯阻塞的现象,为研究超远程里德伯分子的多体系统开辟了道路。