Fang Bingliang
Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
Acta Biochim Biophys Sin (Shanghai). 2016 Jan;48(1):27-38. doi: 10.1093/abbs/gmv090. Epub 2015 Sep 7.
Activating mutations of oncogenic RAS genes are frequently detected in human cancers. The studies in genetically engineered mouse models (GEMMs) reveal that Kras-activating mutations predispose mice to early onset tumors in the lung, pancreas, and gastrointestinal tract. Nevertheless, most of these tumors do not have metastatic phenotypes. Metastasis occurs when tumors acquire additional genetic changes in other cancer driver genes. Studies on clinical specimens also demonstrated that KRAS mutations are present in premalignant tissues and that most of KRAS mutant human cancers have co-mutations in other cancer driver genes, including TP53, STK11, CDKN2A, and KMT2C in lung cancer; APC, TP53, and PIK3CA in colon cancer; and TP53, CDKN2A, SMAD4, and MED12 in pancreatic cancer. Extensive efforts have been devoted to develop therapeutic agents that target enzymes involved in RAS posttranslational modifications, that inhibit downstream effectors of RAS signaling pathways, and that kill RAS mutant cancer cells through synthetic lethality. Recent clinical studies have revealed that sorafenib, a pan-RAF and VEGFR inhibitor, has impressive benefits for KRAS mutant lung cancer patients. Combination therapy of MEK inhibitors with either docetaxel, AKT inhibitors, or PI3K inhibitors also led to improved clinical responses in some KRAS mutant cancer patients. This review discusses knowledge gained from GEMMs, human cancer cells, and patient-related studies on RAS-mediated tumorigenesis and anti-RAS therapy. Emerging evidence demonstrates that RAS mutant cancers are heterogeneous because of the presence of different mutant alleles and/or co-mutations in other cancer driver genes. Effective subclassifications of RAS mutant cancers may be necessary to improve patients' outcomes through personalized precision medicine.
致癌RAS基因的激活突变在人类癌症中经常被检测到。在基因工程小鼠模型(GEMMs)中的研究表明,Kras激活突变使小鼠易患肺、胰腺和胃肠道的早期肿瘤。然而,这些肿瘤大多没有转移表型。当肿瘤在其他癌症驱动基因中获得额外的基因变化时,就会发生转移。对临床标本的研究也表明,KRAS突变存在于癌前组织中,并且大多数KRAS突变的人类癌症在其他癌症驱动基因中存在共突变,包括肺癌中的TP53、STK11、CDKN2A和KMT2C;结肠癌中的APC、TP53和PIK3CA;以及胰腺癌中的TP53、CDKN2A、SMAD4和MED12。人们已经投入了大量精力来开发靶向参与RAS翻译后修饰的酶、抑制RAS信号通路下游效应器以及通过合成致死性杀死RAS突变癌细胞的治疗药物。最近的临床研究表明,索拉非尼,一种泛RAF和VEGFR抑制剂,对KRAS突变的肺癌患者有显著疗效。MEK抑制剂与多西他赛、AKT抑制剂或PI3K抑制剂的联合治疗也在一些KRAS突变癌症患者中带来了更好的临床反应。这篇综述讨论了从GEMMs、人类癌细胞和与患者相关的研究中获得的关于RAS介导的肿瘤发生和抗RAS治疗的知识。新出现的证据表明,由于存在不同的突变等位基因和/或其他癌症驱动基因中的共突变,RAS突变癌症是异质性的。通过个性化精准医学对RAS突变癌症进行有效的亚分类可能是改善患者预后所必需的。