Suppr超能文献

大肠杆菌的KdpD传感激酶对多种不同信号作出反应,以开启Kdp转运系统的表达。

The KdpD Sensor Kinase of Escherichia coli Responds to Several Distinct Signals To Turn on Expression of the Kdp Transport System.

作者信息

Epstein Wolfgang

机构信息

Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA

出版信息

J Bacteriol. 2015 Sep 8;198(2):212-20. doi: 10.1128/JB.00602-15. Print 2016 Jan 15.

Abstract

UNLABELLED

Kdp, one of three saturable K(+) uptake systems in Escherichia coli, is the system with the highest affinity for K(+) and the only one whose expression is strongly controlled by medium K(+) concentration. Expression is controlled by a two-component system of KdpD, the sensor kinase, and KdpE, the response regulator. There is general agreement that expression occurs when the growth rate of cells begins to become limited by K(+) availability. How K(+) limitation results in expression has been controversial. Studying the roles of the major components of the growth medium shows that KdpD senses at least two distinct signals inside the cell, those of Na(+) and NH4 (+), and it probably senses other monovalent cations in the cell. KdpD does not sense turgor.

IMPORTANCE

The expression of the Kdp K(+) transport system of E. coli occurs when cells become limited in their growth rate by the availability of K(+). Cells sense limited K(+) and try to compensate by taking up other monovalent cations, particularly Na(+) and NH4 (+). These cations are sensed in the cytoplasm by the KdpD response regulator, presumably to stimulate its kinase activity. It is shown that KdpD does not sense turgor, as was suggested earlier.

摘要

未标记

Kdp是大肠杆菌中三种可饱和钾离子摄取系统之一,是对钾离子亲和力最高的系统,也是唯一其表达受培养基钾离子浓度强烈调控的系统。其表达由一个双组分系统控制,即传感激酶KdpD和反应调节因子KdpE。普遍认为,当细胞生长速率开始受到钾离子可用性限制时,Kdp就会表达。钾离子限制如何导致其表达一直存在争议。对生长培养基主要成分作用的研究表明,KdpD在细胞内至少感知两种不同信号,即钠离子和铵离子的信号,并且它可能还感知细胞内的其他单价阳离子。KdpD不感知膨压。

重要性

当细胞生长速率因钾离子可用性而受到限制时,大肠杆菌的Kdp钾离子转运系统就会表达。细胞感知到钾离子受限,并试图通过摄取其他单价阳离子(特别是钠离子和铵离子)来进行补偿。这些阳离子在细胞质中被KdpD反应调节因子感知,推测这会刺激其激酶活性。研究表明,KdpD并不像之前所认为的那样感知膨压。

相似文献

3
The sensor kinase KdpD of Escherichia coli senses external K+.
Mol Microbiol. 2013 Jun;88(6):1194-204. doi: 10.1111/mmi.12251. Epub 2013 May 28.
4
The universal stress protein UspC scaffolds the KdpD/KdpE signaling cascade of Escherichia coli under salt stress.
J Mol Biol. 2009 Feb 13;386(1):134-48. doi: 10.1016/j.jmb.2008.12.007. Epub 2008 Dec 11.
5
Reduction of turgor is not the stimulus for the sensor kinase KdpD of Escherichia coli.
J Bacteriol. 2008 Apr;190(7):2360-7. doi: 10.1128/JB.01635-07. Epub 2008 Feb 1.
9
The complexity of the 'simple' two-component system KdpD/KdpE in Escherichia coli.
FEMS Microbiol Lett. 2010 Mar;304(2):97-106. doi: 10.1111/j.1574-6968.2010.01906.x. Epub 2010 Jan 20.
10
Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIA(Ntr) in Escherichia coli.
Mol Microbiol. 2009 May;72(4):978-94. doi: 10.1111/j.1365-2958.2009.06704.x. Epub 2009 Apr 28.

引用本文的文献

1
The role of the type VI secretion system in the stress resistance of plant-associated bacteria.
Stress Biol. 2024 Feb 20;4(1):16. doi: 10.1007/s44154-024-00151-3.
3
Sensor histidine kinases and regulate biofilm and virulence in PA14.
Front Cell Infect Microbiol. 2023 Oct 10;13:1270667. doi: 10.3389/fcimb.2023.1270667. eCollection 2023.
4
Genetic Basis of sp. K1 Adaptation Mechanisms to Extreme Environmental Conditions.
Life (Basel). 2023 Aug 11;13(8):1728. doi: 10.3390/life13081728.
5
A comprehensive genomic analysis provides insights on the high environmental adaptability of strains.
Front Microbiol. 2023 Apr 17;14:1177951. doi: 10.3389/fmicb.2023.1177951. eCollection 2023.
7
What do we know about osmoadaptation of Yersinia pestis?
Arch Microbiol. 2021 Dec 8;204(1):11. doi: 10.1007/s00203-021-02610-1.
8
Role of the Regulatory Operon of in Modulating Bacterial Growth .
Front Genet. 2021 Jul 29;12:698875. doi: 10.3389/fgene.2021.698875. eCollection 2021.
9
Unappreciated Roles for K Channels in Bacterial Physiology.
Trends Microbiol. 2021 Oct;29(10):942-950. doi: 10.1016/j.tim.2020.11.005. Epub 2020 Dec 5.
10
Aureolic Acid Group of Agents as Potential Antituberculosis Drugs.
Antibiotics (Basel). 2020 Oct 19;9(10):715. doi: 10.3390/antibiotics9100715.

本文引用的文献

1
Cytoplasmic sensing by the inner membrane histidine kinase EnvZ.
Prog Biophys Mol Biol. 2015 Sep;118(3):119-29. doi: 10.1016/j.pbiomolbio.2015.04.005. Epub 2015 May 1.
2
The sensor kinase KdpD of Escherichia coli senses external K+.
Mol Microbiol. 2013 Jun;88(6):1194-204. doi: 10.1111/mmi.12251. Epub 2013 May 28.
3
The KdpD/KdpE two-component system: integrating K⁺ homeostasis and virulence.
PLoS Pathog. 2013 Mar;9(3):e1003201. doi: 10.1371/journal.ppat.1003201. Epub 2013 Mar 28.
4
Evolution of two-component signal transduction systems.
Annu Rev Microbiol. 2012;66:325-47. doi: 10.1146/annurev-micro-092611-150039. Epub 2012 Jun 28.
5
Regulatory roles of the bacterial nitrogen-related phosphotransferase system.
Trends Microbiol. 2010 May;18(5):205-14. doi: 10.1016/j.tim.2010.02.003. Epub 2010 Mar 2.
6
Why and how bacteria localize proteins.
Science. 2009 Nov 27;326(5957):1225-8. doi: 10.1126/science.1175685.
7
Cation Transport in Escherichia coli: V. Regulation of cation content.
J Gen Physiol. 1965 Nov 1;49(2):221-34. doi: 10.1085/jgp.49.2.221.
8
Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIA(Ntr) in Escherichia coli.
Mol Microbiol. 2009 May;72(4):978-94. doi: 10.1111/j.1365-2958.2009.06704.x. Epub 2009 Apr 28.
9
The universal stress protein UspC scaffolds the KdpD/KdpE signaling cascade of Escherichia coli under salt stress.
J Mol Biol. 2009 Feb 13;386(1):134-48. doi: 10.1016/j.jmb.2008.12.007. Epub 2008 Dec 11.
10
Reduction of turgor is not the stimulus for the sensor kinase KdpD of Escherichia coli.
J Bacteriol. 2008 Apr;190(7):2360-7. doi: 10.1128/JB.01635-07. Epub 2008 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验